• Login
    View Item 
    •   Home
    • Proceedings
    • Prosiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri
    • Simposium Nasional Ke-18 RAPI 2019
    • View Item
    •   Home
    • Proceedings
    • Prosiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri
    • Simposium Nasional Ke-18 RAPI 2019
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Perbandingan Identifikasi Tanda Tangan Offline menggunakan Backpropgation Berdasarkan Learning Rate

    Thumbnail
    View/Open
    VIEW/DOWNLOAD (442.2Kb)
    Date
    2019
    Author
    Kumalasanti, Rosalia Arum
    Yanwastika, Renna Ariyana
    Metadata
    Show full item record
    Abstract
    Era modern telah banyak merubah pola kehidupan masyarakat mulai dari komunikasi hingga transaksi. Transaksi di era modern ini telah beranjak dari transaksi offline menjadi transaksi online walaupun masih ada beberapa transaksi offline yang dipertahankan. Transaksi offline yang masih dipertahankan hingga saat ini merupakan transaksi yang melibatkan verifikasi keabsahan di dalamnya. Salah satu verifikasi keabsahan yang hingga saat ini digunakan adalah tanda tangan. Tanda tangan sering digunakan sebagai bukti keabsahan suatu berkas atau dokumen penting. Menilik dari kepentingan tanda tangan tersebut, maka besar kemungkinan tanda tangan dapat pula dimanfaatkan oleh oknum yang tidak bertanggung jawab untuk memalsukan dokumen dengan memberikan tanda tangan palsu. Pada penelitian ini akan dibahas mengenai pentingnya memberikan keamanan pada tanda tangan sebagai bukti keabsahan. Identifikasi tanda tangan menjadi pilihan untuk memberikan keamanan biometric berupa tanda tangan sesuai kepemilikannya. Proses ientifikasi ini terdiri dari dua bagian utama yaitu fase pelatihan dan fase pengujian. Fase pelatihan ini citra tanda tangan akan dikenai beberapa proses yaitu threshold, alihragam wavelet , kemudian akan dilatih dengan menggunakan Jaringan Syaraf Tiruan (JST) Backpopagation. Masuk pada fase pengujian memiliki proses yang sama seperti pada fase pelatihan namun pada akhir proses akan dilakukan perbandingan antara citra input dengan citra uji. Akurasi yang optimal dapat dimaksimalkan pada pemilihan parameter dan juga learning rate. JST dapat bekerja optimal apabila dilatih dengan menggunakan data input yang sudah disesuaikan pada saat simulasi. Parameter dan learning rate disini menjadi hal yang penting dalam mencapai akurasi yang optimal. Learning rate berhubungan langsung dengan beban komputasi yang akan berdampak dengan kecepatan pemrosesan pelatihan dan pengujian citra. Ukuran citra yang digunakan adalah 256x256 piksel da teknik-teknik yang digunakan diharapkan dapat mendukung pencapaian akurasi pada verifikasi tanda tangan dengan optimal.
    URI
    http://hdl.handle.net/11617/11708
    Collections
    • Simposium Nasional Ke-18 RAPI 2019

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    Publikasi IlmiahCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV