• Login
    View Item 
    •   Home
    • Proceedings
    • Prosiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri
    • Simposium Nasional Ke-11 RAPI 2012
    • View Item
    •   Home
    • Proceedings
    • Prosiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri
    • Simposium Nasional Ke-11 RAPI 2012
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deteksi Wajah Metode Viola Jones pada Opencv Menggunakan Pemrograman Python

    Thumbnail
    View/Open
    E03.pdf (273.9Kb)
    Date
    2012-12-18
    Author
    Prasetya, Dedi Ary
    Nurviyanto, Imam
    Metadata
    Show full item record
    Abstract
    Sistem pendeteksian dan pengenalan wajah semakin banyak. Walaupun semakin banyak, bukan berarti penelitian mengenai hal ini sudah selesai. Tuntutan akan efektifitas, baik kecepatan maupun tingkat keakuratan dalam sebuah sistem pendeteksian semakin diperhitungkan. Banyak dari beberapa sistem pendeteksian wajah menggunakan metode Viola Jones sebagai metode pendeteksi objek. Metode Viola Jones dikenal memiliki kecepatan dan keakuratan yang tinggi karena menggabungkan beberapa konsep (Haar Features, Integral Image, AdaBoost, dan Cascade Classifier) menjadi sebuah metode utama untuk mendeteksi objek. Banyak dari sistem deteksi tersebut menggunakan C atau C++ sebagai bahasa pemrograman, dan OpenCV sebagai librari deteksi objek. Hal ini dikarenakan librari OpenCV menerapkan metode Viola Jones kedalam sistem deteksinya, sehingga memudahkan dalam pembuatan sistem. Penelitian ini bertujuan untuk mengimplementasikan Viola Jones ke dalam sistem deteksi wajah sederhana dengan memanfaatkan library yang ada pada OpenCV dan memanfaatkan bahasa pemrograman Python sebagai pondasi sistem. Setelah sistem selesai dibuat, dilakukan pengujian sistem terhadap karakteristik wajah yang dapat dideteksi. Metode penelitian ini dimulai dari studi literatur, pengumpulan data, perancangan sistem, kemudian menganalisis data. Dari hasil pengujian, batasan jarak wajah yang dapat dideteksi antara ± 134 dan ± 21 cm dari kamera, batasan kecerahan antara ± 50 nilai mean maksimal gelap dan ± 200 nilai mean maksimal terang. Ketika dilakukan pengujian wajah manusia dalam keadaan frontal, sistem mampu mendeteksi dengan akurasi 100% dan waktu deteksi kurang dari 0.5 detik. Sedangkan ketika wajah dalam keadaan non-frontal, kemiringan maksimal wajah yang dapat dideteksi sebesar ± 74°. Sistem dapat mendeteksi adanya beberapa (lebih dari satu) wajah dalam suatu citra. Sistem juga dapat mendeteksi objek yang menyerupai wajah ketika objek tersebut memilki kontur yang sama dengan kontur wajah manusia (kontur wajah pada template), misalnya, wajah boneka dan topeng Hulk.
    URI
    http://hdl.handle.net/11617/3936
    Collections
    • Simposium Nasional Ke-11 RAPI 2012

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    Publikasi IlmiahCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV