• Login
    View Item 
    •   Home
    • Proceedings
    • Prosiding University Research Colloquium
    • The 3rd University Research Colloquium (URECOL) 2016
    • View Item
    •   Home
    • Proceedings
    • Prosiding University Research Colloquium
    • The 3rd University Research Colloquium (URECOL) 2016
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Prediksi Beban Listrik Harian Pada Sektor Industri Berbasis SVM Dengan Kernel Polinomial

    Thumbnail
    View/Open
    15. Luqman Assaffat,.pdf (393.4Kb)
    Date
    2016-02
    Author
    Assaffat, Luqman
    Metadata
    Show full item record
    Abstract
    The industrial sector need an information system of da ily electrical load forecasting, to control the electrical load, backup electrical en ergy and operational arrangements of the industrial activities. The electric load prediction information system must be accurate by a small error value for that go al is reached. The objective research prod uce an information systems for accurate electrical load da ilyforecasting by using three variables training data. They are times series of the pa st electric load da tas, the data of production capacity and da ytypes data. Based Support Vector Machine (SVM) using a polinomial k ernel f unction, theinformation system of daily electricity load prediction on the industrial sector is capable of producing 3.34% MAPE value by SVM training da ta of 11 months an d the system work s by Kernel-order polinomial 2
    URI
    http://hdl.handle.net/11617/6771
    Collections
    • The 3rd University Research Colloquium (URECOL) 2016

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    Publikasi IlmiahCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV