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Abstract: Geotechnical variability is a complex attribute that results from 
many disparate sources of uncertainties. It is strongly dependent on the 
properties of the soil beneath and adjacent to the structure of interest. 
Probabilistic models began more realistic design compare to the old 
deterministic design as it can describe and take account of soil variability. 
Although the deterministic approach is widely used, it is well known, that 
almost all natural soils are spatially variable in their properties and rarely 
homogenous. This paper focuses on the preliminary analysis to prepare the 
probabilistic analysis of Pile Foundation design by characterizing the tip 
resistance dan sleeve friction for 6 CPTs data taken from Ibis Hotel 
Surakarta. It involves an extensive analysis to perform the best-fit 
distribution of pointwise variability of tip resistance and sleeve friction using 
computer program written in MATLAB and FORTRAN. Finally, the point 
statistics (i.e. mean, standard deviation, and coefficient of variation) across 
the site were derived together with the interpretation of the possibility of the 
existence of different materials. The results show that, there is no objection 
to the hypothesis of normality in the chi-square analysis, although the best fit 
distribution for each profile or 6 profiles which collected at once are varying 
(i.e.normal, log-normal, gamma, beta. When all tip resistance data are 
collected at once, the mean and standard deviation is 42.02 kg/cm2 and 40 
kg/cm2 respectively. The mean and standard deviation of all sleeve friction 
data is 1.02 kg/cm2 and 0.8 kg/cm2 respectively. The coefficient of variation 
of tip resistance and sleeve friction tend to be skewed as its value is high (i.e. 
0.95 and 0.78 respectivel). 

Keywords: chi-square, deterministic, probabilistic, tip resistance, variability. 

I.  Introduction 

raditionally factor of safety (F) is attained by the assumption that a single 
value factor of safety can represent a homogeneous soil property. However, 

even in a so-called “uniform” deposit, spatial variation does exist and therefore 
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assigning material properties is one of the main sources of uncertainty. The 
combination of variability in material properties and inadequate number of 
observations leads to a very high degree of uncertainty in the values used for 
design. In addition, many codes in Europe and USA, has considered the reality of 
spatial variation in soil properties, and statistical methods have been proposed as a 
means of accounting for the effect of spatial variability. The reality of complex, 
varying geological formations lead to the representation of soil properties as a 
function of a statistical distribution, e.g. normal, lognormal or exponential. 
Traditional probabilistic analysis of structures are often based on pointwise 
variability, which often can be approximated by a normal distribution with two 
statistical parameters, namely, the mean () and standard deviation (. 

In 1950s and 1960an, Freudenthal published some papers on risk and 
reliability concept and followed by many researchers in Civil Engineering 
(Baecher et al. 2003). This theory has been developed on the geotechnical 
construction in 1970s. In that time, many offshore projects, mining, slope stability 
analysis and some giant geotechnical projects applied the reliability concept. 
Furthermore, the collapse of some giant projects (i.e. Teton Dam and many 
artificial islands in Canada) have been brought to a new paradigm of geotechnical 
design from the old method to the risk and reliability method. Lumb (1966) 
examined the using of the normal distribution for numerous soil properties in 
terms of consistency, compressibility and soil strength variations. He concluded 
that most of the soil properties were normally distributed except the coefficient of 
consolidation. Lumb (1970) subsequently investigated the use of beta and normal 
distribution for the soil strength by chi-square method and it had been shown that 
the soil strength distribution can be approximated quite closely by a beta 
distribution, but in some cases showed that the central portions can also be 
approximated almost as closely by the more familiar normal distribution. 
Moreover, Lee et al. (1983) noted that the normal or log-normal distributions are 
adequate for the large majority of geotechnical data, unless the extreme values of a 
parameter are of critical interest. 

A.  Statistics 
Statistics deals with the collection and the analysis of data to solve real 

problems. What makes the discipline of statistics useful and unique is that it is 
concerned with the process of getting data and understanding problems in the 
presence of variability (Walpole et al. 1998). Data sets are often large, so that data 
must be organized, summarized, and displayed before any interpretation can be 
attempted. Graphical displays, such as plots and diagrams, are especially useful to 
uncover unknown features in the data (Hogg & Ledolter, 1987). For large data sets 
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it is better to construct a frequency distribution and display the results in form of 
histogram. Frequently, however, scientists also want to summarize the information 
numerically and obtain a few statistics that characterized the data set, in particular, 
the location and variability measurements. Location measures in a data set are 
designed to provide the analysis of some quantitative measure of where the data 
centre is in a sample. One obvious and very useful measure is the sample mean. 
The mean is simply a numerical average. Suppose that the data in a sample are x1, 
x2, x3,…, xn. The mean is 
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The simple measure of variability is the range of the data (xmax-xmin) which 
tells about the extent of the variability of such data. The sample measure of spread 
that is used most often is the sample standard deviation, 
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Since  and  are expressed in the same units, the coefficient of variation is 
independent on the unit measurement and is expressed by 
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B.  Probability Density Function 
The concept of probability distribution always deals with discrete and 

continuous distribution. A discrete distribution assumes each of its values with a 
certain probability that often represented in the form of bar chart or probability 
histogram. A continuous distribution has a probability of zero of assuming exactly 
any of its values and consequently, its probability cannot be given in tabular form. 
It can be stated as a formula that would necessarily be a function of numerical 
values of a continuous variable X and as such will be represented by the functional 
notation f(x). In dealing with continuous variables, f(x) is usually called the 
probability density function. The most important continuous probability 
distribution in the entire field of statistics is the normal distribution. Its graph, 
called the normal curve, is the bell shaped curve. The normal distribution is often 
referred to as the Gaussian distribution. The density function of a normal variable 
X, with mean  and standard deviation , is 
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Although the normal distribution can be used to solve many problems in 
engineering and science, there are still numerous situations that require different 
types of density functions, such as the gamma distribution. Its name was derived 
from the well-known gamma function (Walpole et al. 1998). The probability 
density function of the gamma distribution can be expressed in terms of the 
gamma function:  
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Alternatively, the gamma distribution can be parameterized in terms of a 
shape parameter α = k and an inverse scale parameter β = 1 / θ, called a rate 
parameter: 
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In probability theory and statistics, the beta distribution is a continuous 
probability distribution with the probability density function (pdf) defined on the 
interval [0,1]: 
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In which α and β are parameters that must be greater than zero and B is the beta 
function (Farrington et al. 1999).  

The Log-normal distribution is used for wide variety of applications. The 
distribution applies in cases where a natural log transformation results in normal 
distribution (Limpert et al. 2001). The log-normal distribution has probability 
density function (pdf): 
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C.  Chi Square Goodness-of-fit Test 
One of the testing methods of statistical hypotheses of a data set that has a 

specified theoretical distribution is chi square test. The test is based on how good a 
fit between the frequency of occurrence of observations in an observed sample and 
the expected frequencies obtained from the hypothesized distribution (Walpole et 
al. 1998). A goodness-of-fit test between observed and expected frequencies is 
based on the quantity: 
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2 is a value of a random variable in which sampling distribution is approximated 
very closely by the chi-square distribution with v = k -1 degrees of freedom. The 
symbols oi and ei represent the observed and expected frequencies, respectively, 
for the ith cell. If the observed frequencies are close to the corresponding expected 
frequencies, the 2-value will be small, indicating a good fit. If the observed 
frequencies differ considerably from the expected frequencies, the 2-value will 
be large and the fit is poor. 

D.  Available Raw CPT Data 
The cone penetration test (CPT) is becoming increasingly more popular as an 

in-situ test for site investigation and geotechnical design. As a logging tool this 
technique is unequalled with respect to the delineation of stratigraphy and the 
continuous rapid measurement of parameter like bearing and friction (Robertson 
& Campanella. 1983). Be in opposition to the use of SPT, the CPT has an 
advantage that provides a continuous data record together with excellent 
repeatability and accuracy at a relatively low cost. Some experiences around the 
world, CPT have confirmed a repeatability of tip resistance that is better than +2% 
(Jefferies et al. 1988a). According to Robertson (1986), the CPT is perfect for 
investigating loose deposits, since the pushing force is small; hence, this test has 
become a major asset in evaluating the liquefaction potential of soils. The CPT 
data from the Ibis Hotel soil were obtained from 6 locations to the depth up to 20 
m.  

II.  Technical Work Preparation 

A.  Pre-processing of CPT Data 
As 6 CPT data has been taken, isolated unrepresentative values of CPT data 

are likely appearing as any other type of field test, which might cause 
misinterpretation of the results. These unrepresentative data exist as an effect of 
the soil disturbance by the cone penetration, or some errors in measuring 
equipment, or the material type variation. Data filtering might be carried out to 
overcome these uncertainties. Filtering is a process applied to a region where data 
do not represent the true variation of the profile; such data are therefore 
eliminated.  
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B.  Post-processing of CPT Data 
A very time consuming and complicated process is needed to analyze the 

CPT data statistically. In this present investigation, the authors use a ready Fortran 
90 computer program written by Wong (2004), which has been modified by 
Gitman (2006) by adding the Matlab computer program to represent the 
probability density function and performing the best fit distribution for each 
profile. The authors have also developed some Fortran 90 codes to tackle the 
statistical parameters which are varying with depth. These programs make the 
possibility of investigating several CPT profiles within a reasonably short period 
of time. This chapter highlights the main steps in examining the field data, and 
Figure 1 gives a summary flowchart for all steps. 

 
 

 
 

Fig. 1. Summary flowchart of CPT evaluation process. 
 

In this current study, the four types of distribution (i.e. normal, gamma, beta 
and log-normal) have been analyzed to get the best fit distribution for both tip 
resistance and state parameter. The probability density function is defined by 
subdividing the range of data values into classes of equal width as following 
formula: 
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Where fi is the sampling class frequency for the class reference number i, nc 
is the total number of classes and bw is the class width. In the automated program, 
6 classes have been used for all profiles. Thus, each profile has a different class 
width as the range of data is differ from one profile to another. By considering the 
four types of distribution, the best fit distribution has been calculated using the chi 
square goodness-fit method. The best fit distribution is the distribution that has the 
lowest value of chi square. For every CPT profile, the point statistics (i.e. the 
mean, , and standard deviation, ) are calculated. 

III.  Result and Discussion 

A.  General Representation of CPT Evaluation Data  
6 CPT data of Ibis Hotel Soil have been evaluated in the current 

investigation. Typical sheets representation of the CPT data can be seen in Figure 
2. For each profile, a typical sheet comprises: (a) the raw CPT profiles; (b) a 
summary of point statistics for tip resistance and sleeve friction; (c) the best fit 
distribution for tip resistance and sleeve friction. In general, the tip resistance of 
Ibis Hotel Soil starts with the lower value up to 3m depth in the order of 14-25 
kg/cm2 and then increases significantly in the depth of 4-6m.  
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a) CPT profile 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) Best fit distribution 
 

Fig. 2. Point 2 sheet CPT evaluation. 
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B.  Probability Density Function 
In general, the probability distribution function of tip resistance and sleeve 

friction shows a different type of distribution in terms of the number of peak 
arises. The mono-modal, bimodal or even multi-modal distribution can be 
identified across the profiles as evaluated in a natural deposit (Listyawan, 2006). 
Indeed, it is observed across the profiles in Ibis Hotel Soil that the mono-modal, 
bimodal or even multi-modal distribution of tip resistance and sleeve friction can 
not be identified. It is probably due to the lack number of data in each profile 
arisen.  

C.  Best fit distribution 
A different best fit distribution arises for each profile, as tabulated in Table I 

and Table II. 
Table I. Best Fit Distribution For TipResistance 

Profile number Best fit distribution 
1 Log-normal 
2 Beta 
3 Gamma 
4 Gamma 
5 Log-normal 
6 Gamma 

 
Table II. Best Fit Distribution For Sleeve Friction 

Profile number Best fit distribution 
1 Normal 
2 Beta 
3 Beta 
4 Normal 
5 Gamma 
6 Normal 

 
For tip resistance, one profile exhibits beta best fit distribution. The number of 

profile having best fir distribution of log-normal and gamma are 2 and 3 profiles 
respectively. The log-normal result seems to be consistent with some previous 
studies (i.e. Fenton 1999 and Lumb 1966) which stated that there were some 
supporting evidence for the log-normal distribution for a number of strictly 
positive soil properties (e.g. strength, elastic modulus, permeability). Furthermore, 
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Fenton & Vanmarcke (2003) also assumed that tip resistance of NGES data 
follows the log-normal distribution. For sleeve friction, 3 profiles exhibit normal 
best fit distribution. Beta best fit distribution arises twice (i.e. profile No. 2 and 3). 
Gamma best fit distribution shows only once in the profile No. 5. There is no 
evidence the log-normal distribution can be represented for sleeve friction. It can 
be explained from Figure 3 and 4, for all data (i.e. 6 profiles were collected at 
once), the best distribution for tip resistance and sleeve friction are gamma and 
beta distribution respectively. 

 
Fig. 3. Distribution of tip resistance for all profiles 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Distribution of sleeve friction for all profiles. 
 
 The chi-square values of the normal, log-normal, beta and gamma distribution 

for both tip resistance and sleeve friction are tabulated in Table III. It can be 
observed that the 2 value of normal distribution for both tip resistance and sleeve 
friction are 0.050 and 0.563 respectively, whereas less than 2

υ,α = 7.815 (for the 
significance level of 0.95). It means that there is no objection to the hypothesis of 
normality. 
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Table III. Chi-square Value of Tip Resistance and Sleeve Friction (All Profiles) 

Distribution 2 - value 
tip resistance sleeve friction 

Normal 0.050 0.563 
Log-normal 0.130 2.110 
Beta 0.040 0.167 (Best) 
Gamma 0.003 (Best) 0.577 

 

D.  Points Statistics Determination 
Using a fully automated computer algorithm, the statistics for tip resistance and 

sleeve friction have been derived for all CPT profiles. The average values of tip 
resistance for both tip resistance and sleeve friction statistics are summarized in 
Tables IV. The average mean, standard deviation, and coefficient of variation (Vqc) 
of tip resistance are 42.02 kg/cm2, 40 kg/cm2 and 0.95, respectively. The average 
mean, standard deviation, and coefficient of variation (Vfs) of sleeve friction are 
1.02 kg/cm2, 0.8 kg/cm2 and 0.78, respectively. The high value of coefficient of 
variation gives more evident that the distribution of tip resistance tends to be 
skewed. The coefficient of variation of tip resistance (Vqc = 0.95) is not consistent 
with Phoon & Kulhawy (1999) who proposed the range of Vqc for tip resistance 
being equal to 0.01-0.81.  
 

Table IV. Average statistics for all profiles  

Property Tip Resistance Sleeve Friction 
qc (kg/cm2) 42.02 1.02 
qc (kg/cm2) 40 0.8 
Vqc 0.95 0.78 

IV.  Summary and Conclusion 

Reality estimates of the variability of Ibis Hotel Soil are needed for the next 
development and application of reliability-based design. An extensive analysis of 
statistical characterization of 6 CPTs data of Ibis Hotel Soil was conducted in this 
present study. The different materials can not be summarized as the tip resistance 
and sleeve friction distribution did not clearly exhibit predominantly bimodal or 
even multi modal distributions. The chi-square analysis shows that the normal 
distribution was still satisfactory for describing tip resistance and sleeve friction 
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although it can reasonably represented by log-normal distribution since the values 
are always strictly positive and a relatively high degree of variability (Vqc) which 
has been identified 
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