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Abstract—The adsorption and transport of surface active
material such as surfactant and/or protein onto the surface of a
lamella in a foam fractionation column with reflux is investigated
using mathematical simulation. The dynamics of adsorption
of protein and/or surfactant from the bulk solution onto the
surface of the foam lamella is modelled using the Ward-Tordai
equation combined with relevant adsorption isotherms such as
the Henry, Langmuir or Frumkin isotherms. Once the surface
active material is attached to the surface of the lamella and the
surface of the Plateau border, the transport of that material
(in this study is represented by surfactant in the first instance)
is modelled based on the continuity equation. There are two
approaches to the transport of surfactant discussed in this study.
One is the transport of surfactant onto a foam lamella in the
absence of surface viscosity and in the presence of film drainage.
The second approach to the transport of surfactant onto a foam
lamella includes the surface viscosity, however the effect of film
drainage is neglected to simplify the problem thus the model
provides a benchmark for a more complicated system that would
involve film drainage.

Competition between protein and surfactant may occurs in
the absorption of mixed protein-surfactant. The protein arrives
onto the interface at a later time due to a slower diffusion
rate and it displaces the surfactant molecules already on the
surface since protein has a higher affinity for that surface than
surfactant. In the absence of surface viscosity, the Marangoni
effect dominates the film drainage results in accumulation of
surfactant on the surface of the foam lamella in the case of a
lamella with a rigid interface. In the case of a film with a mobile
interface, the film drainage dominates the Marangoni effect and
surfactant is washed away from the surface of the lamella. When
the drainage is very fast, such as that which is achieved by
a film with a mobile interface, the film could be predicted to
attain the thickness of a common black film, well within the
residence time in a foam fractionation column, at which point
the film stops draining and surfactant starts to accumulate on
the lamella surface. The desirable condition in operation of a
foam fractionation column however is when the Marangoni effect
dominates the film drainage and surfactant accumulates on the
surface of a foam lamella such as the one achieved by film with
a rigid interface. In the presence of surface viscosity and the
absence of film drainage, the surface viscous forces oppose the
Marangoni effect and reduce the amount of surfactant transport
onto the foam lamella. A larger surface viscosity results in less
surfactant transport onto the foam lamella.

Keywords: foam fractionation, adsorption, surfactant transport,
film drainage, foam film

I. INTRODUCTION

Foam fractionation is an economical and environmentally

friendly separation method for surface active material such

as protein and/or surfactant [1], [2], [3], [4], [5] based on

bubble separation techniques [6]. Although recently there are

significant number of application-related research on foam

fractionation column followed by vast number of publication,

the commercial application of the technique is very limited [7].

Foam in a foam fractionation column consists of air bubbles

separated by thin liquid films [8]. Due to its amphiphilic

nature, the surface active material is adsorbed onto the surface

of the bubbles [9]. Since air bubbles have much lower density

than the liquid, they will be lifted up to the top of the

column carrying the surface active material with them. The

enriched foamate is then collected from the top of the column.

The amount of adsorbed material determines the efficiency

of a foam fractionation column [1]. The adsorbed materials

also have a role to stabilise the liquid film, preventing the

bubble coalescence and foam collapse [10], [11], [12], [13]

by reducing the mobility of the film surface [11]. The design

of a foam fractionation process needs to optimise the efficiency

of the adsorption as well as the stability of the foam.

Protein and surfactant may coexist in commercial foam

separations [9] depending on the nature of the solution and

also when there is modification of the solution to improve its

separation efficiency [14], [9], [15]. Surfactant is mixed with

protein to modify the adsorption as well as the rheological

characteristic of the adsorbed protein layer [16], [17], [18].

When adsorbed on the interface, protein may exhibit an

immobile surface that stabilize the liquid film [14], [9]. On

the other hand, surfactant may form a mobile interface that

may stabilize the film later on due to the Gibbs-Marangoni

effect [9]. When those two components coexist in a foam

film, the effect may be different from that which results from

the pure substance [9]. Protein and surfactant molecules may

also compete to occupy the interface [19], [17]. Therefore,

it is important to study the adsorption behaviour of mixed

protein-surfactant in order to estimate the efficiency of a foam

fractionation column as well as the stability of the foam itself.
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Due to low liquid content within the foam (less than 10%),

the air bubbles take polyhedral shapes [20], separated by thin

liquid film named foam lamella [8]. Three films meet and form

an interstitial channel named Plateau border [21], [8]. Most of

the liquid within a foam is contained in the Plateau borders

[21] and connected into a network within the foam. Due to

the curvature of the Plateau border, the pressure within it is

lower than that in the film [22]. As a consequence, there will

be liquid drainage from the film towards the Plateau border

[22], [23].

Some foam fractionation columns employ a reflux system

to improve the enrichment of the rising liquid [6], [24], [25],

by returning some part of the collapsed foamate to the top of

the column. The rising stream from the bottom of the column

is enriched by the falling stream from the top [24]. As falling

stream drains through the Plateau border network, it exchanges

mess with adjacent films. This enrichment takes place within

the Plateau borders since most of the liquid within a foam is

inside the Plateau border. As a consequence, the concentration

of surface active material in the Plateau border is higher than

that in the foam film.

Studies on the film drainage and its effect on foam and foam

film stabilisation have been carried out [23], [26], [22], [27],

[11], [28], [29]. However, those studies only consider the film

thinning and did not explore the transport of surfactant onto the

foam lamella. On the other hand, the transport of surfactant

onto the surface of the foam lamella due to the interaction

of forces on it also plays an important role in determining

the separation efficiency of a foam fractionation column.

Therefore, this study examines the transport of surfactant onto

the foam lamella and the phenomena involved in that transport.

Those phenomena include the film drainage, the Marangoni

forces and the viscous forces that arise in response to the

resultant of other forces.

The purpose of a foam fractionation column is to separate

surface active materials from the solution by attachment of

those materials onto the surface of the air bubbles. Therefore,

studying the dynamics and equilibrium of adsorption of sur-

face active material onto the foam as well as the transport of

that surface active material onto the foam film is fundamental

for predicting the efficiency of a foam fractionation column.

The knowledge of adsorption and transport of surface active

materials onto a foam film will be useful to model the

whole foam fractionation column system. In this study, foam

fractionation column with reflux is selected as it gives a better

separation efficiency.

II. ADSORPTION OF MIXED PROTEIN-SURFACTANT

There are many studies examining the kinetics of adsorp-

tion of mixed protein-surfactant. Those studies [30], [16],

[31], [19], [32] determine the adsorption dynamics as well

as adsorption isotherms of mixed protein-surfactant on a

bubble surface based on experimental data. Studies on the

mathematical modelling of adsorption behaviour of mixed

protein surfactant are less common. A predictive mathematical

model for the adsorption dynamics and adsorption isotherm

of mixed protein-surfactant has a significant importance for

examining the efficiency of a foam fractionation column.

Using mathematical model, the cost of conducting experiments

can be minimised without losing the important information

on the adsorption behaviour. Therefore, this study aims to

develop a mathematical model for adsorption of mixed protein-

surfactant on a bubble surface that can be applied to determine

the efficiency of a foam fractionation column.

The equation of state of the surface layer then can be

presented as follows [33]:

−Πω0

RT
= ln(1−θp−θs)+θp(1−ω0/ωp)+αpθ

2
p+αsθ

2
s+2αpsθpθs

(1)

where Π = γ0 − γ is the surface pressure, γ0 is the surface

tension of the solvent, γ is the surface tension of the solution,

R is the gas law constant, T is the temperature, θp = ωpΓp is

the protein surface coverage fraction, Γp is the total adsorption

of protein, ωp is the average molar area of the adsorbed protein

molecules, θs = ωsΓs is the surfactant surface coverage

fraction, ωs is the molar area of the adsorbed surfactant, Γs

is the surface concentration of surfactant, ω0 is the molar area

of the solvent, αp is the intermolecular interaction parameter

of protein, αs is the intermolecular interaction parameter

of surfactant, αps is a parameter describing the interaction

between the protein and surfactant mixture. The adsorption

isotherm of the protein is then derived as:

bpCp =
θp

(1− θp − θs)
exp[−2αpθp − 2αpsθp] (2)

where Cp is the concentration of the protein in the subsurface

layer and bpi are the equilibrium adsorption constants of

protein in the state i.
The adsorption isotherm equation for the surfactant is anal-

ogous as follows:

bsCs =
θs

(1− θp − θs)
exp[−2αsθs − 2αpsθp] (3)

where Cs is the concentration of the surfactant in the sub-

surface layer and bs is the equilibrium adsorption constant of

surfactant.

Adsorption dynamics of both protein and surfactant towards

the gas-liquid interface follow Fick’s equation [34], [35]. The

Laplace transformation of the diffusion equation results in

a general dynamics of adsorption equation on a liquid-gas

interface as proposed by Ward and Tordai [36]. The equation

describes the evolution of surface concentration due to transfer

from the subsurface as follows:

Γp(t) =

√
Dp

π

[
2Cpb

√
t−

∫ t

0

Cp(τ)√
t− τ

dτ

]
(4)

Γs(t) =

√
Ds

π

[
2Csb

√
t−

∫ t

0

Cs(τ)√
t− τ

dτ

]
(5)

where Dp and Ds are diffusion coefficients of protein and

surfactant in the solvent, respectively, Cpb and Csb are the bulk
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concentrations of protein and surfactant, respectively and τ is

a dummy integration variable. The first term on the right hand

side of the equation represents the diffusive transport to the

surface. This diffusion is mitigated by a reduction in diffusive

driving force as surfactant and/or protein on the surface builds

up, which is presented by the second term of the right hand

side of the equation. The Ward-Tordai equation presented in

Equations 4 − 5 is applicable on a planar interface. This shape

of interface is selected as in common applications such as

foam fractionation, polyhedral bubbles with nearly planar films

occur in the system, due to low fraction of liquid [21].

A dimensional analysis is carried out upon the equations

of dynamics of adsorption of mixed protein-surfactant which

are Equations 2, 3, 4 and 5. The dimensionless form of

the equations governing the dynamics of adsorption involves

dimensionless groups that we call D, Γm, κp, κs and cb,

precise definitions of which will be given shortly. The resulting

dimensionless equations are as follows.

Dynamics of protein adsorption:

θp(t
′) =

1√
π

[
2
√
t′ −

∫ t′

0

C ′
p(τ

′)√
t′ − τ ′

dτ ′
]

(6)

Adsorption isotherm of protein:

C ′
p(t

′) =
θp(t

′)
κp [1− θp(t′)− θs(t′)]

exp [−2αpθp(t
′)− 2αpsθs(t

′)]

(7)

Dynamics of surfactant adsorption:

θs(t
′) = cb

√D
Γm

1√
π

[
2
√
t′ −

∫ t′

0

C ′
s(τ

′)√
t′ − τ ′

dτ ′
]

(8)

Adsorption isotherm of surfactant:

C ′
s(t

′) =
θs(t

′)
κs [1− θp(t′)− θs(t′)]

exp [−2αsθs(t
′)− 2αpsθp(t

′)]

(9)

And the equation of state:

Π′ = − ln(1−θp−θs)−θp(1−ω0/ωp)−αpθ
2
p−αsθ

2
s−2αpsθpθs

(10)

where Π′ = Πω0/(RT ) is the dimensionless surface pressure,

θp = Γp/Γpm is the dimensionless surface concentration

of protein (i.e. the coverage fraction), θs = Γs/Γsm is the

dimensionless surface concentration (coverage fraction) of

surfactant, Γpm = 1/ωp and Γsm = 1/ωs are the maximum

surface concentration of protein and surfactant respectively

(both measures of surface capacity), t′ = (Dp t)/(Γpm/Cpb)
2

is the dimensionless time, C ′
p = Cp/Cpb is the dimensionless

bulk concentration of protein at the layer next to the surface,

C ′
s = Cs/Csb is the dimensionless bulk concentration of

surfactant at the layer next to the surface, Cpb and Csb are the

initial bulk concentration of protein and surfactant respectively,

κp = bpCpb and κs = bsCsb are the dimensionless adsorption

equilibrium constant of protein and surfactant, respectively

(both measures of surface affinity), cb = Csb/Cpb is the

relative bulk concentration, D = Ds/Dp is the relative

diffusivity and Γm = Γsm/Γpm = ωp/ωs is the relative

γ

γ

Fig. 1: Two-dimensional slice of a lamella

capacity which is equivalent to the ratio between molar areas

of protein and surfactant.

III. SURFACTANT TRANSPORT ONTO A FOAM LAMELLA

As the surface active material is adsorbed from the bulk

liquid onto the surface of the Plateau border and the film, the

gradient of concentration between the Plateau border and the

foam film leads to a gradient of surface tension. When there is

gradient of surface tension, the Marangoni effect takes place,

causing the Marangoni flow from the region with low surface

tension to the region with higher surface tension. For systems

of interest here, the direction of the Marangoni flow is towards

the centre of the film, opposite to the direction of the film

drainage. This Marangoni effect is important for transport of

surface active material from the surface of Plateau borders

onto the surface of foam lamellae. Moreover, the Marangoni

effect contributes to the stabilisation of the liquid film [11],

[27] as its direction is opposite to the film drainage, therefore

reduces the surface mobility. Therefore this transport plays an

important role in determination of the efficiency of a foam

fractionation column.

A schematic diagram of a two-dimensional slice through

a lamella is shown in Fig. 1. In this study, the interfaces

between the liquid film and the air bubble are assumed to

be symmetric [22]. At the Plateau border, the curvature of the

gas-liquid interface causes lower pressure in the liquid. As a

consequence, there is a suction of liquid from the lamella to

the Plateau border [22]. The surface concentration of surfactant

on the Plateau border interface is higher than the surface

concentration of liquid on the lamella interface due to the

enrichment of surfactant concentration from the reflux stream.

Therefore, the interface at the Plateau border has a lower

surface tension than the interface on the lamella. Because of

that gradient of surface tension, there is a Marangoni flow on

the surface from the low surface tension to the higher surface

tension.

The equation for the profile of surface velocity taking

into account the surface viscosity is developed based on the

lubrication theory. The profile of the surface velocity can be

expressed by the following equation:

us = −x

δ

dδ

dt
+

δ

3μ

[
∂γ

∂x
+

∂

∂x

(
μs

∂us

∂x

)]
(11)
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where us = dx/dt is the surface velocity, x is the distance

from the centre of the lamella along the x axis, t is time, δ is

the half thickness of the lamella, μ is the liquid viscosity, γ is

the surface tension, μs is the surface viscosity. Applying the

Gibbs equilibrium [37] to the surface tension to convert it into

surface excess of surfactant results in the following equation:

3μ

δ

(
us +

x

δ

dδ

dt

)
=

∂

∂x

(
−G ln

Γ

ΓPb

)
+

∂

∂x

(
μs

∂us

∂x

)
(12)

where G is the Gibbs parameter, Γ is the surface excess of

surfactant on the surface of the film and ΓPb is the surface

excess of surfactant on the surface of the Plateau border. This

is generally larger than the surface excess on the film (Γ or

ΓF0 initially at time t = 0).

The foregoing analysis has concerned itself with determin-

ing simple (albeit plausible) fluid flow fields for a foam film.

We now adopt an approach similar to that of [38], i.e. we use

those flow fields within a mass balance equation. Specifically

a surfactant mass balance using the assumption of insoluble

surfactant is developed. Using this assumption, the surfactant

stays on the interface once it is adsorbed. Therefore, there

is no surfactant present within the bulk of film (i.e. surfactant

diffusion is ignored). The surfactant mass balance for insoluble

surfactant is presented as follows:

∂Γ

∂t
+

∂

∂x
(usΓ) = 0. (13)

Knowledge of the film thinning rate dδ/dt is required to

solve Eq. (12). Note however that dδ/dt is a parameter that

we must input to this (uniform film thickness) model – it is not

something we can predict within the framework of our model –

without describing how the film interacts with Plateau borders

around its edges (possibly considering also complex phenom-

ena e.g. dimpling, non-uniformities of the film, as mentioned

previously). Evolution of film thickness and hence dδ/dt can

however in principle be measured experimentally via a device

such as Scheludko cell [39], [40], [41] so an empirical dδ/dt
formula could be obtained, even in the absence of a detailed

model. Alternatively we could employ theoretical estimates of

the thinning rate sourced from literature.

In what follows two approaches to estimating this thinning

rate are discussed. One approach is based on the assumption of

a mobile interface, while the other approach is based on the

assumption of a rigid surface, using the so called Reynolds

equation.

The rate of film thinning for a film with a mobile interface

is determined based on the studies by [22] and [23] (see

also [26]). In this study, half of the film thickness δ is used

as the dependent variable instead of the full thickness, for

determination of the following equation:

dδ

dt
= −3

8

γPbδ
3/2

μL
√
a
. (14)

When the film has rigid interfaces, the drainage follows

the theory developed by [42] (see also [43], [44]). The

thinning rate is determined by application of the lubrication

approximation to the Navier-Stokes equation resulting in the

Reynolds equation as follows:

dδ

dt
= −δ3ΔP

3μL2
(15)

where ΔP is the excess pressure in the foam film as the

driving force of the film drainage and can be expressed as

ΔP = Pc −Π , where Pc is the capillary pressure and Π is

the disjoining pressure [45].

A dimensional analysis was carried out upon Eq. (12) and

results in the following equation:

3

δ′

(
u′
s +

x′

δ′
dδ′

dt′

)
= − 1

δ′0

∂ ln Γ′

∂x′ +
∂

∂x′

(
μ̄s

∂u′
s

∂x′

)
(16)

where u′
s = usμ/Gδ′0 is the dimensionless surface velocity,

δ′0 = δ0/L is the dimensionless initial half film thickness, δ0
is the initial half film thickness, L is half of the film length,

δ′ = δ/L is the dimensionless half film thickness, x′ = x/L
is the dimensionless distance from the centre of the lamella

along the x axis, t′ = tGδ′0/Lμ is the dimensionless time,

Γ′ = Γ/ΓPb is the dimensionless surface excess of surfactant

and μ̄s = μs/μL is the dimensionless surface viscosity. The

dimensionless surface viscosity is the reciprocal of the surface

mobility parameter identified by Leonard and Lemlich in their

study [21], [46].

The dimensionless form of the thinning equation for a film

with a mobile interface is as follows:

dδ′

dt′
= −3

8

δ′3/2

δ′0Ḡ
√
a′
. (17)

and the dimensionless form of the thinning equation for a film

with a mobile interface is as follows:

dδ′

dt′
= − δ′3

3δ′0Ḡ a′
. (18)

IV. PARAMETER VALUES

A. Mixed protein-surfactant adsorption

The parameters used in the simulation are obtained from

a study by Miller et al. [19] using Bovine β-lactoglobulin

(BLG) protein and nonionic decyl dimethyl phosphine oxide

(C10DMPO) surfactant. Those parameters are listed in Table I.

The parameters from the study by Miller et al. were set as

a base case when the simulation involved variation of the

material parameters such as diffusion constant of surfactant Ds

(or analogously D in dimensionless form), surface capacity of

surfactant Γsm (or analogously dimensionless Γm), adsorption

coefficient of surfactant, bs (or analogously κs) and adsorption

coefficient of protein, bp (or analogously κp).

B. Surfactant transport

The present work performs a simulation study of the effect

of surface viscosity on the transport of bovine serum albumin

(BSA) together with a cosurfactant propylene glycol alginate

(PGA) onto a foam film during a process of foam fractionation.

Typical parameters values for the simulation are presented in
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TABLE I: The values of base case parameters used in the

simulation of adsorption dynamics.

Parameter Value Unit

Dp 5× 10−11 m2 s−1

Ds 4× 10−10 m2 s−1

Cpb 1× 10−3 molm−3

Csb 1× 10−2 molm−3

R 8.3144621 Jmol−1K−1

T 298 K
ω0 3.5× 105 m2mol−1

ωp 4.4× 106 m2mol−1

ωs 2.5× 105 m2mol−1

Γpm 2.27× 10−7 molm−2

Γsm 4.00× 10−6 molm−2

αp 0.4
αs −0.25
αps 0.075

bp 1.4× 103 m3mol−1

bs 21.9 m3mol−1

TABLE II: Parameters for simulation of surfactant transport

onto a foam lamella.

Parameters Value Unit

δ0 20× 10−6 m
δcb 15× 10−9 m
L 5× 10−3 m
μ 7× 10−3 Pa s
μs 31± 12× 10−3 Pam s
ΓPb 3× 10−8 molm−2

ΓF0 1.5× 10−8 molm−2

a 5× 10−4 m
γPb 55× 10−3 Nm−1

G 65± 12× 10−3 Nm−1

Tab. II. All parameters except the values of ΓPb, ΓF0, δcb, δ′0
and a were taken from the study by Durand and Stone [37]

using protein BSA together with a cosurfactant PGA, both at

concentration of 4.0 g L−1. The value of a was estimated as

presented in the work by Vitasari et al. [47], while the value

of δcb was taken from Weaire and Hutzler [8]. The values of

ΓPb, ΓF0 are estimates, taken as lower than the maximum

surface excess Γmax of BSA which was reported in a study

by Fainerman et al. which is Γmax = 5 × 10−8 [33]. Those

parameters are base-case parameters and variations about the

base-case will be applied in the simulations.

V. RESULTS AND DISCUSSION

A. Competition between protein and surfactant molecules on
the surface

Figure 2, corresponding to the base case parameter values,

shows the comparison between the dimensionless subsurface

concentration of protein and the dimensionless subsurface

concentration of surfactant at base case. This simulation was

carried out using these values of dimensionless groups: κp =
1.4, κs = 0.219, D = 8, Γm = 17.6, cb = 10. Since the dif-

fusivity coefficient of surfactant is higher than the diffusivity

coefficient of protein, surfactant is more rapidly transferred to

the subsurface. At early time, there is therefore more surfactant

adsorbed on the surface. Due to the faster diffusion (high

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

C
’

t’

protein 
surfactant 

Fig. 2: Dimensionless subsurface concentration as a function

of dimensionless time observed at dimensionless parameters

of: κp = 1.4, κs = 0.219, D = 8, Γm = 17.6, cb = 10.
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 0.4
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θ
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Fig. 3: Surface coverage as a function of dimensionless time

observed at dimensionless parameters of: κp = 1.4, κs =
0.219, D = 8, Γm = 17.6, cb = 10.

D), and also lower surface affinity (viz. the low value of

the parameter κs), surfactant reaches its final concentration

in the subsurface faster than protein. The subsequent arrival

of additional protein in the subsurface provides more protein

molecules to adsorb to the interface while there is limited

further change of surfactant concentration in the subsurface.

As protein has a relatively higher surface affinity (measured by

the values of κp vs. κs), protein molecules compete strongly

with surfactant molecules on the surface. Therefore, protein

molecules replace surfactant molecules on the surface resulting

in lower surface concentration of surfactant as presented in

Figure 3. This overshoot phenomenon also occurs in the

adsorption of mixed surfactants as reported by Mulqueen et

al. [48].
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Figure 4 shows the growth of the surface pressure with

the addition of protein in the bulk solution where the values

of the dimensionless groups are: κp = 1.4, κs = 0.219,

D = 8, Γm = 17.6, cb = 10. The time scale of this

figure is taken up to five units, longer than the time scale

of Figures 2 and 3 which is up to one unit. The longer time

scale in Figure 4 has been selected to show the final surface

pressure is approached on that time scale. The surface pressure

is higher in the presence of protein and surfactant in the bulk

solution compared to the surface pressure resulting from pure

surfactant or pure protein solution. For a fixed amount of

surfactant on the surface (dashed-dotted line), which was set to

be the final surface concentration of surfactant in the presence

of protein (θs = 0.0728), in general, lower surface pressure

occurs compared to that obtained from simulation of dynamic

concentrations of protein and surfactant on the surface. This

happens since the fixed surfactant surface concentration is

mostly lower than the dynamic surface concentration, the only

exceptions being at very early times and at the final time.

Although difficult to resolve on the scale of the graph, at very

early time, the surface pressure is higher in the case of fixed

surface coverage of surfactant due to finite surfactant concen-

tration on the surface initially. By contrast, in the dynamic

case, the surface concentration of surfactant has to grow from

zero at very early times. At final time, of course the surface

pressure of those both cases will be equal since by that time the

dynamic surface concentration of surfactant reaches its final

value that is equal to the selected fixed surface concentration.

The graph also indicates that protein concentration on the

surface is able to increase (and thereby influence surface

pressure) even with the presence of significant surfactant on

the surface. Protein with its higher affinity is able to compete

with surfactant to adsorb on the surface.

B. Numerical simulation of surfactant transport in the case
with film drainage

In this simulation, there are, as we have stated, two ap-

proaches to predict the rate of film drainage. One uses an

assumption of a mobile film surface, and the other uses the

assumption of a rigid film surface. Therefore, some notion of

the degree of surface mobility needs to be available in order

to select the appropriate film drainage equation. The choice of

surfactant determines the surface mobility as studied by [49],

The predicted drainage rate of film with a mobile interface

is very fast. Without any evaporation, film thinning is limited

to a final film thickness of the order of 30 nm (δcut-off = 15nm)

to form a film known as a common black film [50]. The film

does not thin further due to electrostatic repulsion within it

[51], [50], [52]. In this simulation with a mobile interface, the

film reaches the thickness of common black film at t′ = 3.6,

corresponding to dimensional time t = 0.1 s, which is much

shorter than the residence time in the foam fractionation

column at t′ = 383, which corresponds to dimensional time

about t = 12 s. After reaching the thickness of common black

film, the lamella does not thin further due to electrostatic

repulsion between the layers (assuming of course sufficient
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Fig. 4: Dimensionless surface pressure as a function of dimen-

sionless time at various protein-surfactant composition using

dimensionless parameters of: κp = 1.4, κs = 0.219, D = 8,

Γm = 17.6, cb = 10 (solid line: pure surfactant; dashed line:

dynamic protein and dynamic surfactant surface concentration;

dotted line: dynamic protein and fixed surfactant surface

concentration; dashed-dotted line: pure protein.

surfactant still remains to stabilise the film). We incorporate

this repulsion in an approximate fashion as a sharp cut-off of

the thinning rate at a specified δ′ taken as 3× 10−6, although

in reality the decay of the drainage rate would be spread

over a range of δ′ values: one could model that comparatively

easily via so called double layer theory, with an electrostatic

disjoining pressure which would start to grow as soon as film

thickness fell to within a few Debye lengths [53] of the cut-off

thickness (since the electrostatic interaction between surfaces

or particles has an exponential behaviour with a characteristic

length equal to the Debye length [54]), and which would

exactly balance the Plateau border capillary suction pressure

precisely when that cut-off thickness was achieved. The pre-

dicted thinning of a film with a mobile interface is presented

in Fig. 5. The time scale is taken to t′ = 400, close to the

residence time inside a foam fractionation column.

On the other hand, a film with a rigid interface drains

orders of magnitudes slower than one with a mobile interface.

Reaching δcut-off takes dimensionless time t′ = 5.93 × 107

which corresponds to t = 1.85 × 106 s. Therefore, the film

with a rigid interface will not reach the thickness of common

black film during the residence time in the foam fractionation

column. The thinning of film with a rigid interface is presented

in Fig. 6. Note that, even though the film fails to approach

anything near a common black film within the residence time

available, significant thinning does in fact take place. It is

a poor approximation to treat the film as having a fixed

thickness.

The choice of film thinning rate equation, impacts on the

surfactant concentration. When the assumption of a mobile

interface is utilised, the film thinning rate follows the equation
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Fig. 5: Change of dimensionless film thickness δ′ with dimen-

sionless time t′ in the case of a mobile interface.
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Fig. 6: Change of dimensionless film thickness δ′ with dimen-

sionless time t′ in the case of a rigid interface.

developed by [22]. The result of the consequent simulation

for Γ′ is presented in Fig. 7. In this simulation, drainage is

driving liquid rapidly out of the film. On the surface, however

there can be a Marangoni force that causes the liquid to

flow in the direction away from the Plateau border. If the

Marangoni flow were to dominate the film drainage, surfactant

would accumulate on the surface. However, in this simulation,

the film drainage (initially) dominates the Marangoni flow.

Therefore, surfactant will be washed away from the surface.

As surfactant is washed away, the surface concentration of

surfactant on the film surface becomes lower. According to the

model predictions, Marangoni stresses are unimportant away

from the film edges, but near the film edges they might retain

importance.

The film drains and thins however only until it reaches the

thickness of a common black film. At this thickness, there is

Γ

Fig. 7: Evolution predicted for dimensionless surfactant sur-

face concentration Γ′ along the film length x′ with film

drainage using the assumption of a mobile interface. Labels

on the lines represent the dimensionless time t′. The inset is

zoomed in within the spatial range 0.95 to 1 spatial unit.

no further thinning, therefore only the Marangoni effect takes

place thereafter and this determines the subsequent surfactant

transport. As a result, surfactant begins to accumulate on

the film surface again, albeit starting from a rather low

concentration level. However, since the film is very thin, the

Marangoni effect is weak and the surfactant accumulation is

much slower than that which occurs on a substantially thicker

film such as in the case without film drainage. Remember

however that here we switch off the film drainage abruptly at

a certain cut-off thickness. Were we to reduce the rate of film

drainage rate more gradually (by allowing a film disjoining

pressure to build up with falling film thickness) then we could

potentially begin transferring surfactant back onto the film at

a slightly larger thickness, where the mass transfer rate would

be likewise slightly larger.

The following simulation result presented in Fig. 8 is based

on the assumption of a rigid interface. The thinning rate

of the film then follows the Reynolds equation. Comparing

Eq. (17) with Eq. (18), the thinning rate determined using

the assumption of a rigid interface is much slower than the

thinning rate using the assumption of a mobile interface. As a

consequence, the Marangoni flow dominates the film drainage,

therefore, surfactant accumulates on the film surface right

from the beginning. At any given time however there is less

surfactant on the surface than there would have been in the

absence of film drainage.

One of the interesting results to obtain from the simulation

of surfactant transport onto a foam lamella is the net accu-

mulation of surfactant on the film surface with time. Fig. 9

presents the spatially-averaged surfactant concentration on the

film surface 〈Γ′〉 with time t′ for films without drainage, and

for a draining film with a mobile interface and that with a

rigid interface. In the case of a film without drainage and
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Fig. 8: Evolution of dimensionless surfactant surface concen-

tration Γ′ along the film length x′ with film drainage using the

assumption of a rigid interface. Labels on the lines represent

the dimensionless time t′.

a draining film with a rigid interface, since the Marangoni

effect dominates, the amount of surfactant on the film surface

increases with time and reaches a final equilibrium at a much

shorter time than the residence time in the foam column. On

the other hand, the amount of surfactant on the surface of

the film with a mobile interface decreases with time until a

particular time and subsequently increases with time due to the

absence of any further film drainage. With a mobile interface,

as long as the thickness of film is above the thickness of a

common black film, the drainage is very fast and dominates

the Marangoni effect. As a consequence, the concentration of

surfactant on the film surface decreases with time (although in

reality the decrease is unlikely to be anywhere near as dramatic

as Fig. 9 suggests, because Marangoni stresses will feed back

to the film thinning rate, reducing the rate at which surfactant

can be washed off the film). The subsequent increase of the

amount of surfactant on the surface of film with a mobile

interface only occurs when there is no further film drainage

once the film is as thin as a common black film. Since the

film is very thin, the Marangoni effect is however weak, and

the accumulation of surfactant is quite slow.

C. Surfactant transport onto a foam lamella in the presence
of surface viscosity

The profile of surface velocity obtained from simulation for

this case is presented in Fig. 10.

At early time, the magnitude of u′
s (away from x′ = 1)

grows. As the width of the region near x′ = 1 over which

the system deviates from uniform Γ′ grows, the magnitude of

∂u′′
s/∂x

′ outside this region also grows. At later times how-

ever, the magnitude of ∂u′′
s/∂x

′ decays due to the gradients of

surface concentration eventually decaying as more and more

surfactant accumulates on the film surface. The magnitude of

surface velocity at the end of the film is a decreasing function

of time as shown by the inset in Fig. 10. The subsequent decay
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Fig. 9: Predictions for spatially averaged dimensionless sur-

factant surface concentration 〈Γ′〉 vs dimensionless time t′ on

the surface of films with in the case of no film drainage as

well as with drainage assuming films with a mobile and with

a rigid interface.

Fig. 10: Evolution of surface velocity in the absence of film

drainage calculated using δ′0μ̄s = 5.4 (obtained from δ′0 =
6 × 10−5 and μ̄s = 8.86 × 104), a′ = 0.1 and Γ′

F0 = 0.5.

The computation was carried out using the finite difference

method. Labels on curves are the rescaled dimensionless time

t′′. The inset is zoomed in around x′ = 1. The velocity profiles

show a linear variation with x′ over much of the domain, but

an abrupt deviation from linearity near x′ = 1.
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Fig. 11: Evolution of surfactant surface concentration in the

absence of film drainage calculated using parameters δ′0μ̄s =
5.4 (obtained from δ′0 = 6 × 10−5 and μ̄s = 8.86 × 104),

a′ = 0.1 and Γ′
F0 = 0.5. The computation was carried out

using the finite difference method. Labels on curves are the

rescaled dimensionless time t′′. The profiles show a uniform

concentration region over much of the domain with an abrupt

change in concentration at the end of the domain.

in the velocity is due to the gradient of surface concentration

at x′ = 1 reducing with time due to transport of surfactant

onto the lamella.

The profile of surfactant surface concentration is calculated

using the material point method based on the calculated

surface velocity presented in Fig. 10. The profile of surfactant

surface concentration is presented in Fig. 11.

At positions far from the Plateau border, the surface velocity

is proportional to the distance from the centre of the film. Near

the Plateau border, the surface velocity profile turns around to

satisfy the boundary condition at x′ = 1. Moreover, the surface

concentration of surfactant is uniformly distributed along the

film except at positions near the Plateau border. Interestingly,

we never seem to achieve a state which the spatial variation

of Γ′ is spread over the entire film.

The spatially averaged surfactant surface concentration at

any given time for the case of large surface viscosity has been

calculated and the result is rescaled to match the case of small

surface viscosity. The result is presented in Fig. 12. The rate

of surfactant transport onto the lamella surface is much slower

with large surface viscosity parameter compared with that for

a small surface viscosity parameter and that without surface

viscosity. The larger surface viscosity results in larger surface

viscous effect that opposes the Marangoni effect. As a result,

the magnitude of surface velocity is much smaller, result in

less surfactant transported onto the surface of the lamella.

VI. CONCLUSION

The adsorption behaviour of mixed protein-surfactant is

different from that of single surfactant, where there is com-

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2

〈Γ
’
〉

t’

δ’
0

-μ
s
 = 0              

δ’
0

-μ
s
 = 5.4 × 10

-2

δ’
0

-μ
s
 = 5.4           

Fig. 12: Comparison of the average surfactant surface concen-

tration over time calculated in the absence of surface viscosity

and in the presence of surface viscosity (δ′0μ̄s = 0 − 5.4,

μ̄s = 0−8.86×104). The simulation was using δ′0 = 6×10−5,

a′ = 0.1 and Γ′
F0 = 0.5. The computation was carried

out using the finite difference method. High surface viscosity

severely limits the rate at which surfactant accumulates on the

film.

petition between protein and surfactant molecules to occupy

the interface. The Frumkin isotherm represents the equilibrium

of adsorption on the bubble surface. The diffusion of protein

is slower than that of surfactant. However, the protein will

displace surfactant once it reaches the interface due to the

higher surface affinity of protein. However, there is a critical

affinity of protein for displacement of surfactant to occur. This

critical affinity need not necessarily be higher than the affinity

of surfactant. However, the displacement is more likely to

occur when the affinity of protein is much higher and the

diffusivity of protein is lower than those of surfactant.

The film drainage modelled using a mobile interface is much

faster than that modelled using assumption of a rigid interface.

The film drainage dominates the Marangoni flow in the case

of a lamella with a mobile interface, therefore surfactant is

washed away from the surface of the foam lamella. Having a

mobile interface, a film possibly achieves the thickness of a

common black film, when the drainage stops to occur, during

the residence time in a foam fractionation column with reflux.

In the absence of film drainage, at the thickness of common

black film, surfactant will accumulate on the surface of the

lamella. The desirable condition for operation of a foam frac-

tionation column is when the Marangoni flow dominates the

film drainage which can be achieved by employing surfactant

that gives a rigid interface.

The surface viscous effect reduces the amount of surfactant

transport and a larger the surface viscosity results in less

surfactant transport onto a foam lamella. For a large surface

viscosity, not only the surfactant transport is slow, but also the

profile of surface velocity is proportional to the distance from
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the centre of a lamella, resulting in nearly uniform distribution

of surfactant surface coverage, except within a boundary layer

near the Plateau border.
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[12] B. P. Radoëv, D. S. Dimitrov, and I. B. Ivanov, “Hydrodynamics of thin
liquid films effect of the surfactant on the rate of thinning,” Colloid and
Polymer Science, vol. 252, no. 1, pp. 50–55, 1974.

[13] T. T. Traykov and I. B. Ivanov, “Hydrodynamics of thin liquid films.
effect of surfactants on the velocity of thinning of emulsion films,”
International Journal of Multiphase Flow, vol. 3, no. 5, pp. 471–483,
1977.

[14] A. Mackie and P. Wilde, “The role of interactions in defining the
structure of mixed protein-surfactant interfaces,” Advances in Colloid
and Interface Science, vol. 117, pp. 3–13, 2005.

[15] J. Maldonado-Valderrama and J. M. R. Patino, “Interfacial rheology of
protein-surfactant mixtures,” Current Opinion in Colloid & Interface
Science, vol. 15, no. 4, pp. 271–282, 2010.

[16] R. Miller, V. Fainerman, A. Makievski, J. Krägel, and R. Wüstneck,
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