COMBINED MOBILE AD HOC NETWORK AND MOBILE IP FOR MOBILE TELEMEDICINE SYSTEM

E.M. Husni¹, M. S. Arifianto², W. T. H. Woon², D. V. Viswacheda², L. Barukang²

¹School of Electrical Engineering and Informatics Institut Teknologi Bandung
LSKK, STEI, Jl. Ganesha 10, Bandung 40132, Indonesia
Phone: +62 22 2500 960 Fax: +62 22 2534 217
Email: ehusni@lskk.ee.itb.ac.id

²School of Engineering and Information Technology Universiti Malaysia Sabah
Locked Bag No. 2073, 88999 Kota Kinabalu, Sabah, Malaysia
Phone: +60 88 320000, Ext: 3437, Fax: +60 88 320348
Email: liawas@ums.edu.my

ABSTRACT

This paper discusses the design of mobile telemedicine for delivering medical health care services in remote areas under the Tele-emergency Project. The system design uses Mobile Internet Protocol version 6 (MIPv6) combined with rapidly deployable network based on Mobile Ad-hoc Network (MANET) and IEEE 802.11 Wireless LAN (WLAN) technology. The result of our preliminary simulation for the project, which is the simulation of VoIP traffic over MANET, is also presented here. The network simulation tool used for this project is network simulator—2 (ns2). The project’s primary objective is to create a prototype of mobile telemedicine system including hardware and software that can be rapidly deployed in remote areas or in disaster situation where telecommunication infrastructures are lacking or destroyed.

Keywords: Mobile Ad-hoc Network (MANET), Mobile IP, WLAN, Telemedicine, Ad-Hoc On Demand Distance Vector (AODV).

INTRODUCTION

Telemedicine is defined as the delivery of medical health care and medical expertise using a combination of telecommunications technologies. Telemedicine systems can support applications ranging from video conference to providing diagnostics, high quality image and still-image, and medical database record. The Tele-emergency project proposed tele-emergency units as mobile telemedicine units. The system is based on three technologies viz., MIPv6, MANET, and WLAN. The integration of the technologies will produce a highly capable system with the ability to be rapidly deployed to support medical services. The integration of MANET with Mobile IP has been introduced by Lamont et. al. (2003),
Lamont et. al. (2002) and Tseng et. al. (2003).

TELE-EMERGENCY REQUIREMENTS AND APPLICATIONS

The requirements of the Tele-Emergency are:
1. Capable to work in remote areas, which has limited communications infrastructure,
2. Capable of being deployed for emergency condition,
3. Capable of managing electronic patient records,
4. Supported by real-time multimedia communications and geographical information system (GIS),
5. Low operating cost.

Applications in the Tele-Emergency are classified into basic and extended services. Basic services applications are digital electrocardiogram (ECG), oximeter (spo2 meter), patient database record, and location information based on GPS technologies. Extended services applications are complete multimedia services. All services can be used in rural areas based on wireless communication despite hospitals, which have wired communication.

SYSTEM AND NETWORK ARCHITECTURE

Mobile Ad Hoc Network Review

Ad hoc literally means “formed or used for specific or immediate problems or needs”. Thus, MANET means a mobile network which can be formed or used for specific or immediate problems or needs.

Mobile nodes in a MANET communicate to each other without base station, without the aid of any centralized administration hence it is also known as an infrastructure less wireless network. MANET employs its mobile nodes as a part of the networking system. Each node in MANET can act as an intermediate node, i.e. as a relay to forward packets of data (Toh 2002) and do routing functionality. In MANET, mobile nodes are free to move arbitrarily. It leads to an important property of MANET which is dynamic topology.

MANET routing protocols can be classified into demand-driven routing protocols and table-driven routing protocols. Demand-driven protocols create routes only when the source node initiates a route discovery process. Examples of demand-driven protocols are Ad Hoc On-Demand Distance Vector (AODV) (Perkins et. al. 1999) and Dynamic Source Routing (DSR) (Johnson et. al. 1996). Table-driven protocols attempt to maintain consistent, up to date routing information in routing tables on every node. Examples of table-driven protocols are Destination Sequenced Distance Vector (DSDV) (Perkins et. al. 1994) and Optimized Link State Routing (OLSR) (Jacquet et. al. 2001).

Mobile IP Review

The traditional way of IP address assignment to a node is network dependent. It brings problem in a mobile network environment. When a mobile node moves from one wireless network to other network, the IP address must be changed accordingly, while ongoing connection must be maintained and the packets belonging to the connection must be delivered continuously. Mobile IP is the solution to this problem.

Mobile IP users keep the same long-term IP address, i.e. home address, which has the same network prefix as a network called home network. When a Mobile Node determines that it is connected to a
foreign network, it acquires a care-of address in addition to its home address. Care-of address is a forwarding address for a roaming mobile node.

In mobile IP, packets destined for the mobile node are always sent to the mobile’s home network. When a mobile node moves to a foreign network, it gets the care-of address from a router in the foreign network, called foreign agent. The mobile node then registers the new location to a router in its home network, called home agent. The home agent captures packets meant for the roaming mobile node, encapsulates and forwards it to the foreign agent. The foreign agent then delivers the packets to the mobile node. Packets in the reverse direction from the mobile node can go directly to the corresponding host without going through the home agent.

Mobile IPv6 simplifies the scenario by removing the foreign agent. The mobile node uses IPv6 address auto-configuration procedure to acquire a collocated care-of address (Perkins et. al. 1996), (Johnson et. al. 2002).

Network Architecture

The Tele-Emergency network consists of at least one sub network using 2.4 GHz WLAN MANET. Fig. 1 shows two MANET based sub networks.

In a sub network, Mobile Nodes (MNs) communicate directly with one another in a peer-to-peer connection, and each MN acts as a router for any other nodes.

The health practitioners use MNs to transmit patient’s data to the health care center or mobile ambulance. The mobile ambulance is a Tele-Emergency MN, which is equipped with a local server, several Tele-Emergency MNs, and some optional communication devices such as satellite dish, ADSL, and ISDN modem. The server in the mobile ambulance functions as a local database when there is no connection to the health care center. However, the optional satellite communication link and wired terrestrial communication in Fig.1 are used only if the field condition is making them more feasible than using 2.4 GHz WLAN.

The health care center, e.g. hospitals, has its own wireless LAN based medical systems working in the 2.4 GHz ISM band (Konstantinos et. al. 2000).

Tele-Emergency’s Mobility with MIPv6 and MANET

Every mobile node can route packets within a sub network based on a MANET routing protocol. Since mobile nodes can move arbitrarily, the network topology can change according to the ongoing moves.

In Fig. 1, MN_1 is a member of sub network MANET 1. This sub network is the home network of MN_1. The other network, sub network MANET 2, is MN_2’s home network and a foreign network for MN_1. The MNs use MIPv6 for addressing. Each Tele-Emergency mobile node (MN) has a home address (HoA) given by the home agent (HA) in the home network. The home network has a network prefix matching that of the
When a mobile node such as MN_1 can move anywhere, anytime in the home network or move into foreign network as shown in Fig. 2. When MN_1 is attached to a foreign network, it obtains a care of address (CoA) and registers it with HA_1. The HA_1 will know the current address and location of the MN_1.

When a correspondent node (CN) such as the server in health care center sends packets towards MN_1’s home address, the packets are intercepted in MN_1’s home network by HA_1 and tunneled to MN_1’s care-of address.

When MN_1 sends packets to the CN, it uses its CoA as source address and puts its HoA in the Destination Options (home address options). MN_1 informs the CN of its new CoA so that subsequent data traffic can be sent directly between MN_1 and CN, without tunneling process to the HA_1. Upon the packet receive by CN; the HoA replaces the source address so that the applications in CN perceive that it is still communicating with the MN at its HoA. While the CN sends packets to MN_1, it puts MN_1’s CoA in the destination field and the HoA in the type 2 routing header. The same processes are applied to MN_2 when it is moved and attached into a different sub networks.

The macro mobility given by MIPv6 combined with MANET micro mobility within sub network provides seamless mobility for Tele-Emergency MN.

Simulation

Simulation of MANET

The simulation integrates WLAN and ad hoc network to form a wireless-cum-wired environment. The selected routing protocol is AODV, and we use an AODV extension called AODV+ (Hamidian 2003).

The performance of AODV+ is evaluated by running simulations on ns2 which is a discrete event simulator developed by the University of California at Berkeley and the VINT project (Fall & Varadhan 1997). The AODV+ extensions on ns2 can be obtained (Hamidian -).

In this experiment, a total of 24 static nodes, considered as small-scale network
(i.e., 2-29 nodes) (Macker & Corson 2004), were randomly placed across the simulation environment of size 1500m×1000m. This closely resembled geographical environment for communications in rural areas.

Since AODV+ was meant to work in wired-cum-wireless environment, two gateways and a router were deployed to provide connection to the Internet. The gateways and routers formed the wired environment and are within the range of each other. The bandwidth capacity is 1000 Mbps while the delay is 0.1 seconds. It is not the purpose of this project to examine the performance in wired network but in the wireless environment. Therefore, the resources in the wired network are assumed to be abundant and shall not affect the overall performance of the system.

The radio propagation range for each node is 250 meters and channel capacity is 2Mbps. The IEEE 802.11 MAC protocol with Distributed Coordination Function (DCF) is adopted as the MAC layer in this simulation model. DCF is a method for nodes to share the channel capacity. The access scheme is Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). This scheme uses Ready-to-Send (RTS) and Clear-to-Send (CTS) control packets to reserve the channel and solve the hidden nodes problems. Each correctly received packet is preceded with acknowledgement (ACK) packet to the sender.

The traffic type is CBR (constant bit rate) which is commonly used for voice based applications (Boukerche & Bononi 2004). In CBR mode, silences are not exploited for other voice or data traffic (Veeraraghavan et. al. 2001). Each simulation is executed for 200 seconds. Data rates are selected from VoIP CODECs and are presented in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1. VOIP CODECS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CODECs</td>
</tr>
<tr>
<td>Packet size (b)</td>
</tr>
<tr>
<td>Data rate (kbps)</td>
</tr>
<tr>
<td>Packets per second</td>
</tr>
</tbody>
</table>

The simulations use different number of traffic sources against performance metrics like packet delivery fraction (PDF), normalized routing overhead and average end-to-end delay. The results are presented in graphs and extensive analysis is provided in the next section. Before proceeding to the next section, we present a summary of the simulation parameters in Table 2.

<table>
<thead>
<tr>
<th>TABLE 2. SIMULATION PARAMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Number of nodes</td>
</tr>
<tr>
<td>Number of gateways</td>
</tr>
<tr>
<td>Number of router</td>
</tr>
<tr>
<td>Radio propagation range</td>
</tr>
<tr>
<td>Wireless channel capacity</td>
</tr>
<tr>
<td>Wired channel capacity</td>
</tr>
<tr>
<td>Medium access control protocol</td>
</tr>
<tr>
<td>Mobility/Movement</td>
</tr>
<tr>
<td>Simulation time</td>
</tr>
<tr>
<td>Environment size</td>
</tr>
<tr>
<td>Traffic type</td>
</tr>
<tr>
<td>Number of connections</td>
</tr>
<tr>
<td>Queue length</td>
</tr>
</tbody>
</table>

Simulation Results and Analysis
Based on the simulation settings mentioned in previous section, we present the results and analysis in this section. The performance metrics are packet delivery fraction (PDF), normalized routing
overhead and end-to-end delay. PDF refers to the ratio of data packets delivered to destination to packets generated by the sources. It affects the maximum number of throughput that the network can support. Normalized routing is where the number of control packets is normalized against sent data packets. It determined how efficient and scalable the routing protocol is. End-to-end delay measures the time it takes for a packet to reach its destination. It determines how well the protocol uses the available resources efficiently.

Fig. 3 presents the packet delivery fraction against various number of connections. Based on table 1 and 2, the CODECs introduce tremendous amount of traffic in one second while each nodes are only able to handle 50 packets in their queue. Therefore, we predict that the performance will degrade as the number of connections increase due to limited resources. However, for G.723.1, it is still able to deliver 100% traffic with 4 connections. For the increasing number of connections, the performance decreased from 84.3% at 8 connections to 40% at 20 connections. G.711 is regarded as the average performer while G.729A is the worst CODEC in this performance metric. As the number of connections increase, more and more packets are being pumped into the network and thus causing cache overflow in busy nodes. G.723.1 is still able to withstand this effect in small connections because the traffic is slower (33 packets/sec) compared to the others (66 and 100 packets/sec). Another important factor is the route discovery process. While the originator node spends some time to locate a route to destination, the application layer continues to produce packets. When the queue is full and the route is not yet available, packets on the queue will be discarded.

Average end-to-end delay metric is presented in Fig. 4. Again G.723.1 is the best performer against the other two CODECs. The delay suffered for 4 connections is 0.0085 seconds and for 8 connections is 0.08 seconds. For 12 connections, the delay increases steeper than for lower number of connections and stabilizes after 16 connections. As for G.711, the delay increases very steep between 4 connections and 8 connections. G.729A recorded a more stable delay rate in all number of connections ranging from 0.22 to 0.58 seconds. The simulations were done in static environments. The traffics are bound to concentrate on the particular routes because change of routes does not occur except for transmission error. As a result, the traffic is not evenly distributed and the effect of congestion increases as the number of traffic increases. This is clearly shown in G.723.1 and G.729A. One more interesting factor is the packet size. The larger the size, the more time required to process them. G.711 has the largest packet size (178 bytes) followed by G.723.1 (82 bytes) and G.729A (68 bytes). This is the reason that G.711 suffered higher delay than G.723.1 except with 4 connections. The relatively low packet size and transfer rate makes G.723.1 the ideal CODEC.

![Fig. 3. Packet Delivery Fraction](image-url)
Finally, the result for normalized routing load is presented in Fig. 5. This metric is a measure of ratio between routing packets and number of packets sent. The normalized routing load for all CODECs vary within 1.019 to 1.082, hence the performances for all CODECs are almost similar for all connections. Therefore, we can conclude that in a static network the amount of routing packets are relative to number of packets sent. Without mobility the nodes do not need to rediscover routes and inform others about broken links.

Unfortunately, the simulation results of these mobile telemedicine schemes cannot be compared to another mobile telemedicine system because there has no other results published. The research of mobile telemedicine system is hardly found.

CONCLUSIONS

We present the status of the Tele-Emergency project. Our approach in developing the prototype includes MANET- WLAN simulation using ns2. The performance of delivering voice data in the extended AODV+ protocol is evaluated using ns2 simulator. Out of the three selected CODECs, G.723.1 works best in the simulation environment.

Simulation of various video CODECs on MANET implementation with Mobile IPv6 will be the subject of further works.
REFERENCES

Fall,K.; Varadhan,K. Ed., 1997, ns Notes and Documentation, The VINT Project, UC Berkeley, LBL, USC/ISI and Xerox PARC.

Hamidian,A., AODV+: An extension to AODV, Source code for implementation on ns2, available: http://www.telecom.lth.se/Personal/alekh/.

