Show simple item record

dc.contributor.authorSyuhri, Ahmad
dc.contributor.authorHadi, Widyono
dc.contributor.authorFitoyo, Achmad
dc.contributor.authorSyuhri, Skriptyan
dc.date.accessioned2020-01-02T03:55:48Z
dc.date.available2020-01-02T03:55:48Z
dc.date.issued2019
dc.identifier.citationAhmed R., Mir, F. and Banerjee, S., (2017). “A review on energy harvesting approaches for renewable energies from ambient vibrations and acoustic waves using piezoelectricity” Smart Materials and Structures, Vol. 26 (8). Chik, T. N. T., Zakaria, M. F., Remali, M. A. and Yusoff, N. A., (2016). “Vibration Response of Multi Storey Building Using Finite Element Modelling” IOP Conference Series: Materials Science and Engineering, Vol. 136. Deraemaeker, A. and Soltani, P., (2016). “A short note on equal peak design for the pendulum tuned mass dampers” Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 231 (1) pp. 285-291. Ding, W., Song, B., Mao, Z. and Wang, K., (2015). “Experimental investigations on a low frequency horizontal pendulum ocean kinetic energy harvester for underwater mooring platforms” Journal of Marine Science and Technology, Vol 21 (2) pp. 359-367. Iliuk, I., Balthazar, J. M., Tusset, A. M., Piqueira, J. R. C., Rodrigues de Pontes, B., Felix, J. L. P. and Bueno, A. M., (2013). “A non-ideal portal frame energy harvester controlled using a pendulum” The European Physical Journal Special Topics, Vol. 222 (7) pp. 1575-1586. Inman, D. J., (2009). “Engineering vibration”, Upper Saddle River, N.J., Pearson/Prentice Hall. Jazar, R. N., (2009). “Vehicle Dynamics: Theory and Application”, New York: Springer Science + Business Media. Kecik, K., (2013). “Energy Harvesting of a Pendulum Vibration Absorber” Przegląd Elektrotechniczny, Vol. 89 (7) pp. 169-172. Kecik, K., Mitura, A. and Warminski, J., (2013). “Efficiency analysis of an autoparametric pendulum vibration absorber” Eksploatacja i Niezawodnosc - Maintenance and Reliability, Vol. 15 (3) pp. 221-224. Lee, B.-C. and Chung, G.-S., (2016). “Design and analysis of a pendulum-based electromagnetic energy harvester using anti-phase motion” IET Renewable Power Generation, Vol. 10 (10) pp. 1625-1630. Li, Z., Zuo, L., Kuang, J. and Luhrs, G., (2013). “Energy-harvesting shock absorber with a mechanical motion rectifier” Smart Materials and Structures, Vol. 22 (2). Liang, C., Wu, Y. and Zuo, L., (2016). “Broadband pendulum energy harvester” Smart Materials and Structures, Vol. 25 (9). Liu, X., (2012). “An Electromagnetic Energy Harvesting for Powering Consumer Electronics”, Tesis, Clemson University. Lourenco, R., (2011). “Design, Construction and Testing of an Adaptive Pendulum Tuned Mass Damper”, Tesis, University of Waterloo. Malaji, P. V. and Ali, S. F., (2015). “Analysis of energy harvesting from multiple pendulums with and without mechanical coupling” The European Physical Journal Special Topics, Vol. 224 (14-15) pp. 2823-2838. Marszal, M., Witkowskim B., Jankowski, K., Perlikowski, P. and Kapitaniak, T., (2017). “Energy harvesting from pendulum oscillations” International Journal of Non-Linear Mechanics, Vol, 94 pp. 251-256. Passaro, V. M. N., Cuccovillo, A., Vaiani, L., De Carlo, M. and Campanella, C. E., (2017). “Gyroscope Technology and Applications: A Review in the Industrial Perspective” Sensors, Vol. 17 (10). Rao, S. S., (2011). “Mechanical Vibrations” Upper Saddle River, N.J., Pearson/Prentice Hall. Tang, X. and Zuo, L., (2012). “Vibration energy harvesting from random force and motion excitations” Smart Materials and Structures, Vol. 21 (7). Wiercigroch, M., Najdecka, A. and Vaziri, V., (2011). “Nonlinear Dynamics of Pendulums System for Energy Harvesting” Springer Proceedings in Physics, Vol. 139 pp. 35–42. Zhang, P. S., (2010). “Design of electromagnetic shock absorbers for energy harvesting for energy harvesting from vehicle suspensions” Tesis, Stony Brook University. Zhang, Y., Zhang, X., Zhan, M., Guo, K., Zhao, F. and Liu, Z., (2015). “Study on a novel hydraulic pumping regenerative suspension for vehicles” Journal of the Franklin Institute, Vol. 352 (2) pp. 485-499.id_ID
dc.identifier.issn2686-4274
dc.identifier.urihttp://hdl.handle.net/11617/11714
dc.description.abstractSeiring dengan perkembangan dibidang elektronik dan teknologi material, saat ini peralatan elektronik dapat dibuang sekecil dan sehemat (energi) mungkin. Sensor – sensor elektrik untuk kebutuhan monitoring, biasanya hanya membutuhkan daya pada rentang milivolt. Sehingga sensor tersebut dapat ditenagai dari sumber daya yang memanfaatkan lingkungan sekitar, sebagai contohnya tenaga surya dan angin. Dengan catatan lingkungan teresebut mempunyai sinar matahari ataupun angin yang cukup untuk dikonversi menjadi listrik dan memenuhi daya sensor. Untuk kasus pada lingkungan yang hanya ada energi vibrasi, seperti sensor mitigasi kebencanaan, struktur dalam gedung ataupun jembatan dan kendaraan baik darat, laut maupun udara, diperlukan suatu energy harvester yang tepat untuk memenuhi daya listrik pada sensor tersebut. Tujuan dari penelitian adalah merancang multipurpose pendulum sebagai energy harvester dan vibration absorber (MPEH). Dalam penelitian ini, dilakukan pengujian secara ekperimental dengan memberikan input baik dengan impulse maupun harmonik. Secara umum konsep tersebut menggunakan pendulum dengan arah rotasi ke dua sumbu, yaitu X and Z. Semua gerakan pendulum akan disearahkan gerakannya (rectification) hingga putaran yang masuk ke generator hanya akan berputar ke salah satu arah baik CW ataupun CCW pada sumbu X.id_ID
dc.language.isootherid_ID
dc.publisherProsiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri XVIII 2019id_ID
dc.titleStudi Ekperimen tentang Multipurpose Pendulum sebagai Energy Harvester dan Vibration Absorberid_ID
dc.typeArticleid_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record