dc.identifier.citation | Abdrashitov, E. F., Kritskaya, D. A., Bokun, V. C., Ponomarev, A. N., Novikova, K. S., Sanginov, E. A., & Dobrovolsky, Y. A. (2016). Synthesis and properties of stretched polytetrafluoroethylene–sulfonated polystyrene nanocomposite membranes. Solid State Ionics, 286, 135–140. https://doi.org/10.1016/j.ssi.2016.01.025 Aini, N. A., Yahya, M. Z. A., Lepit, A., Jaafar, N. K., Harun, M. K., & Ali, A. M. M. (2012). Preparation and characterization of UV irradiated SPEEK/chitosan membranes. International Journal of Electrochemical Science, 7(9), 8226–8235. Doan, H., Inan, T. Y., Unveren, E., & Kaya, M. (2010). Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(15), 7784–7795. https://doi.org/10.1016/j.ijhydene.2010.05.045 Doǧan, H., Inan, T. Y., Unveren, E., & Kaya, M. (2010). Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications. International Journal of Hydrogen Energy, 35, 7784–7795. https://doi.org/10.1016/j.ijhydene.2010.05.045 Erce Şengül, Erdener, H., Akay, R. G., Yücel, H., Baç, N., & Eroǧlu, I. (2009). Effects of sulfonated polyetheretherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. International Journal of Hydrogen Energy, 34(10), 4645–4652. https://doi.org/10.1016/j.ijhydene.2008.08.066 Ghasemi, M., Wan Daud, W. R., Alam, J., Jafari, Y., Sedighi, M., Aljlil, S. A., & Ilbeygi, H. (2016). Sulfonated poly ether ether ketone with different degree of sulphonation in microbial fuel cell: Application study and economical analysis. International Journal of Hydrogen Energy, 41(8), 4862–4871. https://doi.org/10.1016/j.ijhydene.2015.10.029 Hakim, A. R., Purbasari, A., Kusworo, T. D., & Listiani, E. (2012). Composite sPEEK with Nanoparticles for Fuel Cell ’ s Applications : Review. Proceeding of International Conference on Chemical and Material Engineering 2012, 1–11. https://doi.org/10.1007/s00464-014-3878-y Heo, Y., Im, H., & Kim, J. (2013). The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells. Journal of Membrane Science, 425–426, 11–22. https://doi.org/10.1016/j.memsci.2012.09.019 Hidayati, N., Mujiburohman, M., Purnama, H., & Hakim, M. F. (2015). Karakteristik Membran Komposit Poli Eter Eter Keton Tersulfonasi untuk Direct Methanol Fuel Cell. In Prosiding Seminar Nasional Teknik Kimia “Kejuangan” (pp. L5-1-L5-7). Iulianelli, A., & Basile, A. (2012). Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review. International Journal of Hydrogen Energy, 37(20), 15241–15255. https://doi.org/10.1016/j.ijhydene.2012.07.063 Li, M., Shao, Z.-G., Zhang, H., Zhang, Y., Zhu, X., & Yi, B. (2006). Self-Humidifying Cs2.5H0.5PW12O40 / Nafion / PTFE Composite Membrane for Proton Exchange Membrane Fuel Cells. Electrochemical and Solid-State Letters, 9(2), A92–A95. https://doi.org/10.1149/1.2154373 Mohanapriya, S., & Raj, V. (2018). Cesium-substituted mesoporous phosphotungstic acid embedded chitosan hybrid polymer membrane for direct methanol fuel cells. Ionics, 24(9), 2729–2743. https://doi.org/10.1007/s11581- 017-2406-1 Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221–238. https://doi.org/10.1016/j.jpowsour.2007.03.044 Shan, J., Vaivars, G., Luo, H., Mohamed, R., & Linkov, V. (2006). Sulfonated polyether ether ketone (PEEKWC)/ phosphotungstic acid composite: Preparation and characterization of the fuel cell membranes. Pure and Applied Chemistry, 78(9), 1781–1791. https://doi.org/10.1351/pac200678091781 Silva, V., Ruffmann, B., Silva, H., Mendes, a., Madeira, M., & Nunes, S. (2004). Zirconium Oxide Modified Sulfonated Poly (Ether Ether Ketone) Membranes for Direct Methanol Fuel Cell Applications. Materials Science Forum, 455–456, 587–591. https://doi.org/10.4028/www.scientific.net/MSF.455-456.587 Tae, K., Gon, S., Hwan, J., Hyun, D., Chun, B., In, W., … Bong, K. (2011). Composite membranes based on a sulfonated poly ( arylene ether sulfone ) and proton-conducting hybrid silica particles for high temperature PEMFCs. International Journal of Hydrogen Energy, 1–10. https://doi.org/10.1016/j.ijhydene.2011.05.151 Vijayakumar, V., & Khastgir, D. (2018). Hybrid composite membranes of chitosan / sulfonated polyaniline / silica as polymer electrolyte membrane for fuel cells Hybrid composite membranes of chitosan / sulfonated polyaniline / silica as polymer electrolyte membrane for fuel cells, (October 2017). https://doi.org/10.1016/j.carbpol.2017.09.083 Xiao, Y., Xiang, Y., Xiu, R., & Lu, S. (2013). Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells. Carbohydrate Polymers, 98(1), 233–240. https://doi.org/10.1016/j.carbpol.2013.06.017 Xie, W., Yang, X., & Hu, P. (2017). Cs2.5H0.5PW12O40Encapsulated in Metal–Organic Framework UiO-66 as Heterogeneous Catalysts for Acidolysis of Soybean Oil. Catalysis Letters, 147(11), 2772–2782. https://doi.org/10.1007/s10562-017-2189-z Yee, R., Zhang, K., & Ladewig, B. (2013). The Effects of Sulfonated Poly(ether ether ketone) Ion Exchange Preparation Conditions on Membrane Properties. Membranes, 3(3), 182–195. https://doi.org/10.3390/membranes3030182 Yoxen, E. (2012). Seeing with Sound: A Study of the Development of Medical Images. The Social Construction of Technological Systems, 273–295. Zhong, S., Cui, X., Dou, S., & Liu, W. (2010). Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes. Journal of Power Sources, 195(13), 3990–3995. https://doi.org/10.1016/j.jpowsour.2009.12.125 Zhong, S., Cui, X., Fu, T., & Na, H. (2008). Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover. Journal of Power Sources, 180(1), 23–28. https://doi.org/10.1016/j.jpowsour.2008.02.043 Abdrashitov, E. F., Kritskaya, D. A., Bokun, V. C., Ponomarev, A. N., Novikova, K. S., Sanginov, E. A., & Dobrovolsky, Y. A. (2016). Synthesis and properties of stretched polytetrafluoroethylene–sulfonated polystyrene nanocomposite membranes. Solid State Ionics, 286, 135–140. https://doi.org/10.1016/j.ssi.2016.01.025 Aini, N. A., Yahya, M. Z. A., Lepit, A., Jaafar, N. K., Harun, M. K., & Ali, A. M. M. (2012). Preparation and characterization of UV irradiated SPEEK/chitosan membranes. International Journal of Electrochemical Science, 7(9), 8226–8235. Doan, H., Inan, T. Y., Unveren, E., & Kaya, M. (2010). Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications. International Journal of Hydrogen Energy, 35(15), 7784–7795. https://doi.org/10.1016/j.ijhydene.2010.05.045 Doǧan, H., Inan, T. Y., Unveren, E., & Kaya, M. (2010). Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications. International Journal of Hydrogen Energy, 35, 7784–7795. https://doi.org/10.1016/j.ijhydene.2010.05.045 Erce Şengül, Erdener, H., Akay, R. G., Yücel, H., Baç, N., & Eroǧlu, I. (2009). Effects of sulfonated polyetheretherketone (SPEEK) and composite membranes on the proton exchange membrane fuel cell (PEMFC) performance. International Journal of Hydrogen Energy, 34(10), 4645–4652. https://doi.org/10.1016/j.ijhydene.2008.08.066 Ghasemi, M., Wan Daud, W. R., Alam, J., Jafari, Y., Sedighi, M., Aljlil, S. A., & Ilbeygi, H. (2016). Sulfonated poly ether ether ketone with different degree of sulphonation in microbial fuel cell: Application study and economical analysis. International Journal of Hydrogen Energy, 41(8), 4862–4871. https://doi.org/10.1016/j.ijhydene.2015.10.029 Hakim, A. R., Purbasari, A., Kusworo, T. D., & Listiani, E. (2012). Composite sPEEK with Nanoparticles for Fuel Cell ’ s Applications : Review. Proceeding of International Conference on Chemical and Material Engineering 2012, 1–11. https://doi.org/10.1007/s00464-014-3878-y Heo, Y., Im, H., & Kim, J. (2013). The effect of sulfonated graphene oxide on Sulfonated Poly (Ether Ether Ketone) membrane for direct methanol fuel cells. Journal of Membrane Science, 425–426, 11–22. https://doi.org/10.1016/j.memsci.2012.09.019 Hidayati, N., Mujiburohman, M., Purnama, H., & Hakim, M. F. (2015). Karakteristik Membran Komposit Poli Eter Eter Keton Tersulfonasi untuk Direct Methanol Fuel Cell. In Prosiding Seminar Nasional Teknik Kimia “Kejuangan” (pp. L5-1-L5-7). Iulianelli, A., & Basile, A. (2012). Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review. International Journal of Hydrogen Energy, 37(20), 15241–15255. https://doi.org/10.1016/j.ijhydene.2012.07.063 Li, M., Shao, Z.-G., Zhang, H., Zhang, Y., Zhu, X., & Yi, B. (2006). Self-Humidifying Cs2.5H0.5PW12O40 / Nafion / PTFE Composite Membrane for Proton Exchange Membrane Fuel Cells. Electrochemical and Solid-State Letters, 9(2), A92–A95. https://doi.org/10.1149/1.2154373 Mohanapriya, S., & Raj, V. (2018). Cesium-substituted mesoporous phosphotungstic acid embedded chitosan hybrid polymer membrane for direct methanol fuel cells. Ionics, 24(9), 2729–2743. https://doi.org/10.1007/s11581- 017-2406-1 Neburchilov, V., Martin, J., Wang, H., & Zhang, J. (2007). A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 169(2), 221–238. https://doi.org/10.1016/j.jpowsour.2007.03.044 Shan, J., Vaivars, G., Luo, H., Mohamed, R., & Linkov, V. (2006). Sulfonated polyether ether ketone (PEEKWC)/ phosphotungstic acid composite: Preparation and characterization of the fuel cell membranes. Pure and Applied Chemistry, 78(9), 1781–1791. https://doi.org/10.1351/pac200678091781 Silva, V., Ruffmann, B., Silva, H., Mendes, a., Madeira, M., & Nunes, S. (2004). Zirconium Oxide Modified Sulfonated Poly (Ether Ether Ketone) Membranes for Direct Methanol Fuel Cell Applications. Materials Science Forum, 455–456, 587–591. https://doi.org/10.4028/www.scientific.net/MSF.455-456.587 Tae, K., Gon, S., Hwan, J., Hyun, D., Chun, B., In, W., … Bong, K. (2011). Composite membranes based on a sulfonated poly ( arylene ether sulfone ) and proton-conducting hybrid silica particles for high temperature PEMFCs. International Journal of Hydrogen Energy, 1–10. https://doi.org/10.1016/j.ijhydene.2011.05.151 Vijayakumar, V., & Khastgir, D. (2018). Hybrid composite membranes of chitosan / sulfonated polyaniline / silica as polymer electrolyte membrane for fuel cells Hybrid composite membranes of chitosan / sulfonated polyaniline / silica as polymer electrolyte membrane for fuel cells, (October 2017). https://doi.org/10.1016/j.carbpol.2017.09.083 Xiao, Y., Xiang, Y., Xiu, R., & Lu, S. (2013). Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells. Carbohydrate Polymers, 98(1), 233–240. https://doi.org/10.1016/j.carbpol.2013.06.017 Xie, W., Yang, X., & Hu, P. (2017). Cs2.5H0.5PW12O40Encapsulated in Metal–Organic Framework UiO-66 as Heterogeneous Catalysts for Acidolysis of Soybean Oil. Catalysis Letters, 147(11), 2772–2782. https://doi.org/10.1007/s10562-017-2189-z Yee, R., Zhang, K., & Ladewig, B. (2013). The Effects of Sulfonated Poly(ether ether ketone) Ion Exchange Preparation Conditions on Membrane Properties. Membranes, 3(3), 182–195. https://doi.org/10.3390/membranes3030182 Yoxen, E. (2012). Seeing with Sound: A Study of the Development of Medical Images. The Social Construction of Technological Systems, 273–295. Zhong, S., Cui, X., Dou, S., & Liu, W. (2010). Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes. Journal of Power Sources, 195(13), 3990–3995. https://doi.org/10.1016/j.jpowsour.2009.12.125 Zhong, S., Cui, X., Fu, T., & Na, H. (2008). Modification of sulfonated poly(ether ether ketone) proton exchange membrane for reducing methanol crossover. Journal of Power Sources, 180(1), 23–28. https://doi.org/10.1016/j.jpowsour.2008.02.043 | id_ID |