Show simple item record

dc.contributor.authorJulianto, Eko
dc.contributor.authorSarwono, Eko
dc.contributor.authorMursalin, M
dc.date.accessioned2020-01-09T05:22:43Z
dc.date.available2020-01-09T05:22:43Z
dc.date.issued2019
dc.identifier.citation[1] Q. Wang, H. Chen, Y. Wang, and J. Sun, “Thermal shock effect on the glass thermal stress response and crack propagation,” Procedia Engineering., vol. 62, pp. 717–724, 2013. [2] Y. Wang, Q. Wang, X. Fan, and J. Sun, “Simulating the thermal response of glass under various shading conditions in a fire,” Procedia Engineering., vol. 62, no. 1, pp. 702–709, 2013. [3] C. E. Anderson and T. J. Holmquist, “Computational Modeling of Failure for Hypervelocity Impacts into Glass Targets,” Procedia Engineering., vol. 58, pp. 194–203, 2013. [4] P. Stief, J. Dantan, A. Etienne, and A. Siadat, “ScienceDirect ScienceDirect New process of tempering color printed glass by using laser irradiation A new methodology to analyze the functional and physical architecture of for an assembly oriented product family identification,” Procedia CIRP, vol. 74, pp. 390–393, 2018. [5] K. P. Rushton, S. A. Coulson, A. W. N. Newton, and J. M. Curran, “The effect of annealing on the variation of glass refractive index,” Forensic Science International., vol. 209, no. 1–3, pp. 102–107, 2011. [6] J. Deubener et al., “Updated definition of glass-ceramics,” Journal of Non Crystalline Solids, no. January, pp. 1–8, 2018. [7] A. Vedrtnam, “Experimental and simulation studies on delamination strength of laminated glass composites having polyvinyl butyral and ethyl vinyl acetate inter-layers of different critical thicknesses,” Defence. Technology., pp. 1–5, 2018. [8] Y. Zhang, Q. S. Wang, X. Bin Zhu, X. J. Huang, and J. H. Sun, “Experimental study on crack of float glass with different thicknesses exposed to radiant heating,” Procedia Engineering., vol. 11, pp. 710–718, 2011. [9] W. Adi Siswanto, “Instructors Manual Finite Element Method Laboratory Sessions,” no. July, p. 200, 2010. [10] H. Chowdhury and M. B. Cortie, “Thermal stresses and cracking in absorptive solar glazing,” Construction and Building Material., vol. 21, no. 2, pp. 464–468, 2007. [11] Standar Nasional Indonesia and Badan Standar Nasional, “Float glass,” SNI 15-0047-2005,; SNI 15-0130- 1999 , 2005.id_ID
dc.identifier.issn2686-4274
dc.identifier.urihttp://hdl.handle.net/11617/11756
dc.description.abstractPenelitian ini bertujuan untuk mengevaluasi perpindahan kalor konduksi dan tegangan panas pada permukaan kaca lembaran dengan menggunakan aplikasi komputer secara simulasi finite element analysis. Penelitian ini merujuk kepada ketebalan yang berbeda dari 4-19 mm. Parameter penelitian ini berfokus kepada perpindahan kalor tunak / thermal steady state dan tegangan panas. Metode perpindahan panas yang terjadi secara konduksi, diasumsikan bahwa dengan paparan panas secara steady 200⁰ - 600ºC dari waktu 20 menit, pada proses simulasi didistribusikan kalor tetap dengan suhu maksimal yaitu 394.2˚C. Hasil riset menunjukkan bahwa terjadi di mana kaca 19 mm dengan kalor maksimal 396.6 ˚C dan 4 mm minimum 159.9 ˚C. laju aliran kalor konduksi sebesar 4131 Joule dan minimum kalor 213 Joule. Kaca mengalami tegangan panas yang mengakibatkan kaca float mendapatkan tegangan statik von mises stress (VM) yaitu 16.3 – 176.8 MPa, Titik retak menunjukkan hasil dimana eksperimen sebelumnya sama yaitu pada bagian tepi kaca tersebut.id_ID
dc.language.isootherid_ID
dc.publisherProsiding Simposium Nasional Rekayasa Aplikasi Perancangan dan Industri XVIII 2019id_ID
dc.titlePerubahan Temperatur Lembaran Kaca terhadap Perpindahan Kalor Tunak/Steady Stateid_ID
dc.typeArticleid_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record