Show simple item record

dc.contributor.authorHariana, H
dc.contributor.authorPutra, Hanafi Prida
dc.contributor.authorKuswa, Fairuz Milkiy
dc.date.accessioned2021-01-25T06:27:12Z
dc.date.available2021-01-25T06:27:12Z
dc.date.issued2020-12
dc.identifier.citationArinaldo, D., & Adiatma, J. C. (2019). Dinamika Batubara Indonesia : Menuju Transisi Energi yang Adil. Badan Pusat Statistik. (2018). Statistik Kelapa Sawit Indonesia 2018. Badan Pusat Statistik. Bryer, R. (1996). Fireside Slagging, Fouling, and High Temperature Corrosion of Heat Transfer Surface due to Impurities in Steam Raising Fuel. Progress in Energy and Combustion Science, 29–120. Duan, L., Duan, Y., Zhao, C., & Anthony, E. J. (2015). NO emission during co-firing coal and biomass in an oxy-fuel circulating fluidized bed combustor. Fuel, 150, 8–13. https://doi.org/https://doi.org/10.1016/j.fuel.2015.01.110 EBTKE. (2020). Terapkan Metode Co-Firing di PLTU, Ini Potensi Biomassa untuk Subtitusi Batubara. http://ebtke.esdm.go.id/post/2020/02/28/2490/terapkan.metode.co-firing.di.pltu.ini.potensi.biomassa.untuk.subtitusi.batubara Frandsen, F. (1997). Empirical Prediction of Ash Deposition Propensities in Coal-Fired Utilities. GAPKI. (2016). Perkebunan Kelapa Sawit Industri Strategis Energi Terbarukan yang Berkelanjutan. https://gapki.id/news/1944/perkebunan-kelapa-sawit-industri-strategis-energi-terbarukan-yang-berkelanjutan# Hariana, Putra, H. P., & Kuswa, F. M. (2020). Pemilihan Batubara Kalimantan untuk PLTU dengan PC Boiler Menggunakan Tinjauan Potensi Slagging dan Fouling. National Conference of Industry, Engineering, and Technology. Jeong, T. Y., Sh, L., Kim, J. H., Lee, B. H., & Jeon, C. H. (2019). Experimental investigation of ash deposit behavior during co-combustion of bituminous coal with wood pellets and empty fruit bunches. Energies, 12(11). https://doi.org/10.3390/en12112087 Konsomboon, S., Pipatmanomai, S., Madhiyanon, T., & Tia, S. (2011). Effect of kaolin addition on ash characteristics of palm empty fruit bunch (EFB) upon combustion. Applied Energy, 88(1), 298–305. https://doi.org/10.1016/j.apenergy.2010.07.008 Kuprianov, V. I., Ninduangdee, P., & Suheri, P. (2018). Co-firing of oil palm residues in a fuel staged fluidized-bed combustor using mixtures of alumina and silica sand as the bed material. Applied Thermal Engineering, 144(August), 371–382. https://doi.org/10.1016/j.applthermaleng.2018.08.089 Lahijani, P., & Zainal, Z. A. (2011). Gasification of palm empty fruit bunch in a bubbling fluidized bed: A performance and agglomeration study. Bioresource Technology, 102(2), 2068–2076. https://doi.org/10.1016/j.biortech.2010.09.101 Madhiyanon, T., Sathitruangsak, P., Sungworagarn, S., Fukuda, S., & Tia, S. (2013). Ash and deposit characteristics from oil-palm empty-fruit-bunch (EFB) firing with kaolin additive in a pilot-scale grate-fired combustor. Fuel Processing Technology, 115, 182–191. https://doi.org/10.1016/j.fuproc.2013.05.018 Ninduangdee, P., & Kuprianov, V. I. (2016). A study on combustion of oil palm empty fruit bunch in a fluidized bed using alternative bed materials: Performance, emissions, and time-domain changes in the bed condition. Applied Energy, 176, 34–48. https://doi.org/10.1016/j.apenergy.2016.05.063 Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional. (n.d.). Peraturan Presiden Republik Indonesia Nomor 22 Tahun 2017 tentang Rencana Umum Energi Nasional. Płaza, P. P. (2013). The Development of a Slagging and Fouling Predictive Methodology for Large Scale Pulverised Boilers Fired with Coal / Biomass Blends By. 227. Raask, E. (1985). Mineral impurities in coal combustion: behavior, problems, and remedial measures. Hemisphere Publishing Corporation,Washington, DC. https://www.osti.gov/biblio/5693722 Sahu, S. G., Chakraborty, N., & Sarkar, P. (2014). Coal–biomass co-combustion: An overview. Renewable and Sustainable Energy Reviews, 39, 575–586. https://doi.org/https://doi.org/10.1016/j.rser.2014.07.106 Sophia, N. J., & Hasini, H. (2017). Investigation on Coal Slagging Characteristics and Combustion Behaviour in Furnace. MATEC Web of Conferences, 109, 1–6. https://doi.org/10.1051/matecconf/201710905003 Wall, T. F., Bhattacharya, S. P., Zhang, D. K., Gupta, R. P., & He, X. (1993). The properties and thermal effects of ash deposits in coal-fired furnaces. Progress in Energy and Combustion Science, 19(6), 487–504. https://doi.org/https://doi.org/10.1016/0360-1285(93)90002-V Winegartner, E. C., & ASME, R. C. on C. and D. from C. (1974). Coal fouling and slagging parameters. ASME. Yin, C., Luo, Z., Ni, M., & Cen, K. (1998). Predicting coal ash fusion temperature with a back-propagation neural network model. Fuel, 77(15), 1777–1782. https://doi.org/https://doi.org/10.1016/S0016-2361(98)00077-5 Zaid, M. Z. S. M., Wahid, M. A., Mailah, M., Mazlan, M. A., & Saat, A. (2019). Coal combustion analysis tool in coal fired power plant for slagging and fouling guidelines. AIP Conference Proceedings, 2062(January). https://doi.org/10.1063/1.5086575id_ID
dc.identifier.issn2686-4274
dc.identifier.urihttp://hdl.handle.net/11617/12372
dc.description.abstractPembangkit listrik tenaga uap (PLTU) batubara dapat menerapkan teknik co-firing biomassa untuk mendukung kebijakan energi nasional yang menargetkan bauran energi dari sektor EBT sebanyak 23% pada tahun 2025. Salah satu biomassa yang dapat dimanfaatkan untuk co-firing biomassa adalah tandan kosong (empty fruit bunch, EFB) yang potensinya sangat besar di Indonesia. Akan tetapi, tingginya kandungan alkali pada EFB membuat kecenderungan slagging dan fouling tinggi yang dapat mempengaruhi kinerja dan efisiensi pembangkit. Diperlukan seleksi awal untuk mengetahui kelayakan dan keamanan penggunaan bahan bakar blending untuk co-firing. Salah satu cara yang dapat dilakukan adalah dengan melakukan perhitungan prediksi potensi slagging dan fouling. Pada penelitian ini digunakan data sekunder dengan menggunakan data batubara yang berasal dari Kalimantan. Selanjutnya dilakukan perhitungan prediksi potensi slagging dan fouling untuk berbagai macam skenario blending batubara dan EFB. Dari perhitungan didapatkan skenario blending Batubara A dengan EFB sampai 15% dapat diprioritaskan sementara blending Batubara dengan EFB hanya sampai 5% yang dapat diprioritaskan. Sementara skenario blending lain yang berbasis Batubara A didapatkan 15 dari 18 skenario yang dapat diprioritaskan sementara blending berbasis Batubara B didapatkan 4 dari 18 skenario yang dapat diprioritaskan.id_ID
dc.language.isootherid_ID
dc.publisherSimposium Nasional Ke-19 RAPI 2020id_ID
dc.titlePrediksi Awal Komposisi Blending Batubara dan EFB untuk Meminimalisasi Potensi Slagging Fouling pada CO-Firing PLTU dengan PC Boilerid_ID
dc.typeArticleid_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record