Show simple item record

dc.contributor.authorAntonius
dc.date.accessioned2012-06-25T04:05:08Z
dc.date.available2012-06-25T04:05:08Z
dc.date.issued2010-05
dc.identifier.citationAnsari, F. and Li, Q. (1998). ”High-Strength Concrete Subjected to Triaxial Compression.” ACI Materials Journal, V.95 No.6, Nov.-Dec., pp.747-755. Antonius, Imran, I. dan Setiyawan, P. (2005). “Efek Konfigurasi Tulangan Lateral terhadap Perilaku Kekuatan dan Daktilitas Kolom Beton Mutu Normal dan Mutu Tinggi.” Pros. Seminar Nas. Eksp. Lab. Komp. dan Aplikasi dalam bidang Teknik Sipil, UII Yogyakarta, 28 Mei. Antonius. (2004). “Pengaruh Tulangan Lateral terhadap Mekanisme Cover Spalling pada Struktur Kolom Beton Mutu Tinggi.” Pros. Konferensi Nasional Rekayasa Kegempaan II, UGM Yogyakarta, Jan., pp.168-176. Antonius, Imran, I. dan Suhud, R. (2000). “Studi Perilaku Tegangan- Regangan Beton Mutu Tinggi Terkekang.” Prosiding Seminar Teknologi HAKI 2000 “Menjelang bangkitnya dunia konstruksi Indonesia”, Jakarta 31 Agustus. Badan Standardisasi Nasional. (2002). Tata Cara Perhitungan Struktur Beton untuk Gedung. SNI 03-2847-2002. Bing, Li; Park, R. and Tanaka, H. (2001). “Stress-Strain Behavior of High-Strength Concrete Confined by Ultrahigh and Normal- Strength Transverse Reinforcement.” ACI Structural Journal, Vol.98, No.3, pp.395-406. Chen, W.F. (1982). Plasticity in Reinforced Concrete. McGraw- Hill, New York. Eid, R.; Dancygier, A.N. and Paultre, P. (2007). “Elastoplastic Confinement Model for Circular Concrete Columns.” Journal of Structure Engrg. ASCE, Vol.133, No.12, December, pp.1821-1831. Imran, I. and Pantazopoulou, S.J. (2001). “Plasticity Model for Concrete under Triaxial Compression.” Journal of Engrg. Mechanics ASCE; Vol.127, No.3, pp.281-290. Imran, I., Suharwanto, Moestopo, M. and Brahmantyo, D. (2001). “Stress-Strain Response of Confined High Strength Concrete.” Jurnal Teknik Sipil ITB, Vol.8, No.3, July, pp.135-144. Legeron, F. dan Paultre, P. (2003). “Uniaxial Confinement Model for Normal and High-Strength Concrete Columns.” Journal of Struc. Eng. ASCE, V.129, No.2, pp.241-252. Legeron, F. dan Paultre, P. (2000). “Behavior of High-Strength Concrete Columns under Cyclic Flexure and Constant Axial Load.” ACI Structural Journal, V.97, No.4, July-August, pp.591-601. Mander, J.B.; Priestley, M.J.N. and Park, R. (1988). “Theoritical Stress-Strain Model for Confined Concrete.” Journal of Struc. Engrg. ASCE, V.114, No.8, August, pp.1804-1824. Mei, H., Kiousis, P.D., Ehsani, M.R. and Saadatmanesh, H. (2001). “Confinement Effects on High-Strength Concrete.” ACI Structural Journal, July-August, pp.548-553. Montoya, E.; Vecchio, F.J. and Sheikh, S.A. (2006). “Compression Field Modeling of Confined Concrete: Constitutive Models.” Journal of Mat. in Civil Eng. ASCE, Vol.18, No.4, August, pp.510-517. Muguruma, H.; Nishiyama, M. and Watanabe, F. (1993). “Stressstrain Curve Model for Concrete with a Wide-Range of Compressive Strength.” Proc. of High-Strength Concrete Conf., Norway, pp.314-321. Saatcioglu, M. and Razvi, S.R. (1992). ‘Strength and Ductility of Confined Concrete.” Journal of Structural Engrg. ASCE, V.118, No.6, June 1992, 1590-1607 Xie, J.; Elwi, E. and Mac Gregor, J.G. (1995). “Mechanical Properties of Three High-Strength Concretes Containing Silica Fume.” ACI Materials Journal, V.92, No.2, March-April, pp.135-145. NOTASI Ag = luas penampang kolom Ac = luas penampang inti kolom c = tegangan kohesif do= jarak pusat ke pusat sengkang ukuran penampang inti kolom f(σij) = fungsi kriteria leleh f’c = tegangan tekan puncak silinder beton f’co = tegangan puncak beton tak terkekang f’cc = tegangan puncak beton terkekang f’t = tegangan tarik puncak beton f’bc = kuat tekan hancur beton kondisi biaksial f2 = tegangan lateral I1,I2,I3, J1, J2, J3 = invarian tegangan deviatorik m = konstanta friksi material sij = tensor tegangan deviatorik α = konstanta material yang merupakan fungsi dari φ dan c ε1, ε2, ε3 = regangan arah sumbu 1(x), 2 (y) dan 3 (z) ε’c = regangan puncak beton uniaksial ε’cc = regangan puncak beton triaksial (terkekang) ε’v = regangan volume beton φ = sudut geser dalam material λ = konstanta material yang merupakan fungsi dari k1 dan k2 ξ = tegangan hidrostatis arah sumbu Haigh- Wastergaard ρ = tegangan deviatorik arah sumbu Haigh- Wastergaard ρs = rasio tulangan lateral σ1 = tegangan mayor σ2 = tegangan intermediate σ3 = tegangan minor fy = tegangan leleh baja fs = tegangan baja ζxy = tegangan geser bidang xy θ = sudut putar deviatorik ν = Poisson’s ratioen_US
dc.identifier.issn1411- 8904
dc.identifier.urihttp://hdl.handle.net/11617/1687
dc.description.abstractMakalah ini menyajikan studi tentang persamaan konstitutif beton mutu normal dan mutu tinggi yang terkekang berdasarkan pendekatan kriteria leleh. Lima kriteria leleh dan penerapannya dianalisis di sini. Penerapan kriteria leleh terutama perumusannya dalam hal persamaan konstitutif dari peningkatan kekuatan beton yang terkekang (K). Kemudian, persamaan yang dikembangkan disesuaikan dengan hasil eksperimen kolom beton yang terkekang. Dari studi ini, maka model Ansari-Li dan model Imran-Pantazoupoulou, menunjukkan prediksi yang baik dari nilai K untuk beton mutu tinggi yang terkekang pada penampang yang berbentuk melingkar, hal itu agak jauh berbeda dari percobaan mengenai prediksi untuk penampang persegi. Selain itu, model Muguruma yang diusulkan dari hasil uji kolom, jauh lebih akurat dalam memprediksi nilai K untuk beton normal hingga beton mutu tinggi yang terkekang pada penampang berbentuk persegi.en_US
dc.publisherlppmumsen_US
dc.subjectKriteria lelehen_US
dc.subjectbeton terkekangen_US
dc.subjectpersamaan konstitutifen_US
dc.titleEVALUATION OF THE CONSTI TUTIVE EQUATIONS OF CONFINED NORMAL AND HIGH-STRENGTH CONCRETE BASED ON YIELD CRITERION APPROACHen_US
dc.title.alternativeEVALUASI PERSAMAAN KONSTITUTIF BETON MUTU NORMAL DAN MUTU TINGGI TERKEKANG YANG DITURUNKAN BERDASARKAN KRITERIA LELEHen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record