Show simple item record

dc.contributor.authorHandaga, Bana
dc.contributor.authorAsy’ari, Hasyim
dc.date.accessioned2013-12-08T15:55:07Z
dc.date.available2013-12-08T15:55:07Z
dc.date.issued2012-12-18
dc.identifier.citationB. Verma and R. Ghosh (2002), “A novel evolutionary neural learning algorithm, evolutionary computation,” in Proceedings of CEC’02, May 12-17, pp. 1884–1889. C. Blum and K. Socha (2005), “Training feed-forward neural networks with ant colony optimization: An application to pattern classification,” pp. 233–238. C. Blum and K. Socha (2005), “Training feed-forward neural networks with ant colony optimization: An application to pattern classification,” pp. 233–238. D. Karaboga and C. Ozturk (2009), “Neural networks training by artificial bee colony algorithm on pattern classification,” Neural Nerwork World, vol. 19(3), pp. 279–292. D. Karaboga and C. Ozturk (2011), “A novel clustering approach: Artificial bee colony (abc) algorithm,” Applied Soft Computing, vol. 11, no. 1, pp. 652–657. D. Karaboga, B. Akay, and C. Ozturk (2007), Modeling Decisions for Artificial Intelligence, ser. LNCS. Springer- Verlag, vol. 4617/2007, ch. Artificial Bee Colony (ABC) Optimization Algorithm for Training Feed- Forward Neural Networks, pp. 318–329. D. Rumelhart, G. Hinton, and R. Williams (1986), “Learning representations by backpropagation errors,” Nature, vol. 323, pp. 533–536. E. Alba and J. Chicano (2004), Training Neural Networks with GA Hybrid Algorithms, ser. Proc. of Gecco, LNCS. Springer-Verlag, pp. 852–863. Hagan, M.T., and M. Menhaj (1994), "Training feed-forward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp. 989–993. J. Dayhoff (1990), Neural-Network Architectures: An Introduction. NewYork: Van Nostrand Reinhold. J. Zhang, J. Zhang, T. Lok, and M. Lyu (2007), “A hybrid particle swarm optimization backpropagation algorithm for feedforward neural network training,” Applied Mathematics and Computation, vol. 185, pp. 1026–1037. K. Mehrotra, C. Mohan and S. Ranka (1997), Elements of Artificial Neural Networks. Cambridge, MA: MIT Press Kenneth Levenberg (1944). “A Method for the Solution of Certain Non-Linear Problems in Least Squares”. Quarterly of Applied Mathematics 2: 164–168. L. Wang, Y. Zeng, C. Gui, and H. Wang (2007), “Application of artificial neural network supported by bp and particle swarm optimization algorithm for evaluating the criticality class of spare parts,” in Third International Conference on Natural Computation (ICNC 2007), Haikou, China, August 24-27. M. Carvalho and T. Ludermir (2007), “Hybrid Training of Feed-Forward Neural Networks with Particle Swarm Optimization”, ser. LNCS. Springer-Verlag, vol. 4233, pp. 1061–1070. N. Treadgold and T. Gedeon (1998), “Simulated annealing and weight decay in adaptive learning: the sarprop algorithm,” IEEE Transactions on Neural Networks, vol. 9, pp. 662–668. R. Sexton, B. Alidaee, R. Dorsey, and J. Johnson (1998), “Global optimization for artificial neural networks: a tabu search application,” European Journal of Operational Research, vol. 106, pp. 570–584. R. Sexton, R. Dorsey, and J. Johnson (1999), “Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing,” European Journal of Operational Research, vol. 114, pp. 589– 601. S. Haykin (1999), Neural Networks a Comprehensive Foundation. Prentice Hall, New Jersey. T. Back and H. P. Schwefel (1993), “An overview of evolutionary algorithms for parameter optimization,” Evolutionary Computation, vol. 1, no. 1, pp. 1–23. T. Ludermir, A. Yamazaki, and C. Zanchetin (2006), “An optimization methodology for neural network weights and architectures,” IEEE Transactions on Neural Networks, vol. 17(5), pp. 1452–1460. X. Yao (1999), “Evolving artificial neural networks,” in Proceeedings of the IEEE, vol. 87(9), pp. 1423–1447. X.S. Yang and S. Deb (2009), “Cuckoo search via Levy flights”, in: Proc. of World Congress on Nature & Biologically Inspired Computing (NaBIC 2009), December 2009, India, IEEE Publications, USA, pp. 210- 214. X.S. Yang and S. Deb (2010),”Engineering optimization by cuckoo search”, Int. J. Mathematical Modelling and Numerical Optimisation, Vol. 1, No. 4, 330-343.en_US
dc.identifier.issn1412-9612
dc.identifier.urihttp://hdl.handle.net/11617/3938
dc.description.abstractArtikel ini menjelaskan tentang sebuah hibrid algorithm yang menggabungkan antara algorithma cuckoo-search dengan algorithm Levenberg-Marquardt untuk melatih sebuah jaringan syaraf tiruan (Artificial Neural Network – ANN). Pelatihan sebuah ANN adalah sebuah pekerjaan optimisasi dengan tujuan untuk menemukan satu set bobot optimum pada jaringan melalui proses pelatihan. Algotima pelatihan ANN tradisional terjebak pada nilai optimum yang bersifat lokal (local minima), sedangkan teknik pencarian nilai optimum yang bersifat global (global minima) memerlukan waktu yang lama atau berkerja sangat lambat. Selanjutnya telah dikembangkan model hybrid yang mengkombinasikan antara algorithma pencarian global- optimum dan algoritma lokal-optimum untuk melatih ANN. Pada penelitian ini, dilakukan sebuah penggabungan antara algoritma cuckoo-search dengan algoritma Levenberg-Marquardt (CS-LM) untuk melatih sebuah ANN. Hasil menunjukkan bahwa algoritma gabungan CS-LM memiliki performa yang lebih baik dibanding algoritma CS dan LM jika diterapkan secara individual.en_US
dc.publisherUniversitas Muhammadiyah Surakartaen_US
dc.subjectPelatihan Artificial Neural Network (ANN)en_US
dc.subjectCuckoo-Searchen_US
dc.subjectLevenberq- Marquadten_US
dc.subjectkombinasi algoritmaen_US
dc.subjectmultilayer perceptron (MLP)en_US
dc.titleKombinasi Algoritma Cuckoo-Search Dan Levenberg-Marquadt (CS-LM) pada Proses Pelatihan Artificial Neural Network (ANN)en_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record