Show simple item record

dc.contributor.authorAgus, Supratman
dc.date.accessioned2014-10-22T08:43:12Z
dc.date.available2014-10-22T08:43:12Z
dc.date.issued2013-11-03
dc.identifier.citationAndreassen D. 1985. Linking deaths with vehicles and population. Traffic Engineering and Control 26(11): 547-549. Asian Development Bank (ADB). 2005. Asean Regional Road Safety Strategy and Action Plan 20052010.Publication No. 071105, Manila. Badan Pusat Statistik Provinsi Jawa Barat. 2008 – 2011. Jawa Barat Dalam Angka Haykin, S. 1999. Neural Networks: A Comprehensive Foundation. 2 Page-92 nd Edition. New Jersey: Prentice Hall Incorporation. Hobbs FD. 1995. Prencanaan dan Teknik Lalu lintas. Edisi kedua.GajahMada University IRTAD.1998. Definitions and Data Availabbility. Special Report. OECD-RTR, BASt, Gladbach, Germany. Kemeterian Perhubungan RI. 2008. 2009. 2010. 2011. Perhubungan Darat dalam Angka. Keputusan Menteri Kesehatan RI Nomor 828/Menkes/SK/IX /2008, tentang Petunjuk Teknis Standar Pelayanan minimal Bidang Kesehatan di Kabupaten/Kota Kepolisian Negara RI. 2010. Standar Operasional dan Prosedur (SOP) Penanganan Kecelakaan Lalu lintas Jalan. Badan Pembinaan Keamanan POLRI, Direktorat Lalu lintas. Lembaran Negara RI Nomor 96 tahun 2009. Undang-undang Nomor 22 tahun 2009 tentang Lalu lintas dan Angkutan Jalan Lembaran Negara RI Nomor 153 tahun 2009. Undang-undang Nomor 44 tahun 2009 tentang Rumah Sakit. Sekretariat Negara RI Masyarakat Transportasi Indonesia (MTI). 2007. 1-2-3 langkah, Referensi ringkas bagi proses Advokasi Pembangunan Transportasi. Volume 2, Jakarta. World Health Organization (WHO). 2009.Regional Report on Status of Road Safety: The South-East Asia Region.en_US
dc.identifier.isbn9789796361544
dc.identifier.urihttp://hdl.handle.net/11617/4914
dc.description.abstractOrdinance Number 22 Year 2009 stated that fatality data must be completed with hospitals’ data. However, the data reported by Republic of Indonesia Police has not been in accordance to the law. In many countries, researchers have been using population and motor vehicles numbers as variables to predict fatality victims’ number. Those variables are not fit with Indonesian condition . The main purpose of the study was to develop better fatality prediction model in line with Indonesian condition. This was done by developing multivariable Andreassen and ANN models. The model was built by using population data taken from 8 cities in WestJavaProvince. Main results from model validation test are: (1) three variables ANNwith one hidden layer prediction model was the best prediction used for to predict fatality numbers; (2) Fatality number was 122.8% bigger than that fatality data reported by Police RI, that was, 956 people; (3) Andreassen prediction model was unfit to be used in Indonesia.en_US
dc.publisherUniversitas Muhammadiyah Surakartaen_US
dc.subjectatality dataen_US
dc.subjectmultivariableen_US
dc.subjectAndreassen modelen_US
dc.subjectArtificial Neural Network (ANN) modelen_US
dc.titleDevelopment Of Andreassen Model And Artificial Neural Network Multi Variabel For Prediction Of Traffic Fatality In Urban Area-Jawa Barat Provinceen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record