dc.identifier.citation | [1] Alaerts, G. dan Santika, S.S., 1987, “Metoda Penelitian Air”, Usaha Nasional, Surabaya. [2] Astuti, F. (2004), “Pengolahan Limbah Cair Industri Batik dengan Koagulan dan Penyaringan”, Tesis Magister, Program Pascasarjana, Universitas Gadjah Mada, Yogyakarta. [3] BPPT, (1999), “ Teknologi Pengolahan Air: Cara Pengolahan Air Sumur Untuk Kebutuhan Air Minum dengan Filter Ganda” BPPT: Jakarta. [4] Cahyaningrum, S. E. 2001. Karakteristik Adsorpsi Ni (II) dan Cd (II) pada Kitosan dan Kitosan Sulfat [5] dari Cangkang Udang Windu (penausm onodon), Tesis Pasca Sarjana , UGM, Jogjak arta. [6] Darjito. 2001. Karakterisasi Adsorpsi Co(II ) dan Cu(II) pada Adsorben Kitosan Sulfat, Tesis Program Pasca Sarjana, UGM, Yogyakarta. [7] FKBL, (2008), “Panduan Operasional: Pengelolaan Instalasi Pengolahan Air Limbah (IPAL) Kampoeng Batik Laweyan Kota Surakarta” FKBL: Solo. [8] Industri Batik Mahkota, 2008, “ Proses Pembuatan Batik” , Surakarta [9] Joglosemar, (14-02-2009), “Warga Keluhkan Bau IPAL Laweyan, harian Joglo Semar”, edisi 14 Februari 2009, http://harianjoglosemar.com [10]Kedaulatan Rakyat, Januari 2009, “Produksi Bersih dari ‘Kampoeng Batik’ Laweyan” 22/03/2009. [11]Mahatmanti, F.W. 2001. Studi Adsorben Lo gam seng(II) dan Timbal (II) pada [12] Kitosan dan Kitosan Sulfat dari Cangkan g Udang Windu (PenousMonodon), Tesis Program Pasca Sarjana, UGM, Yogyakarta. [13]Mahida, U.N, 1986, “Pencemaran Air dan Pemanfaatan Limbah Industri”, Rajawali Press, p.23, Jakarta [14]Masriati R.(2006), “Pengolahan Limbah Cair Industri Kerajinan Songket Tradisional dengan Adsorbsi Menggunakan Kabon Aktif”, Tesis Program Magister Teknik Kimia, Program Pasca Sarjana Universitas Sriwijaya Palembang. [15]Mu’minah, (2008), “Aplikasi Kitosan Sebagai Koagulan Untuk Penjernihan Air Keruh”, Tesis, Program Pascasarjana, ITB, Bandung. [16] No. H, Lee and Meyers S.P. 2000. Core lation Between Physicochemichal Characteristic and Binding Capacities on Chitosan Product, Journal of Food Science, Vol 65 no 7 1134-1137. [17]Pujiastuti, P, (2003), “Sebaran Karakteristik Air Limbah Industri Batik Sebagai Sumber Utama Pencemaran Air Tanah Dangkal Di Sentra Batik Laweyan Surakarta” Prosiding Workshop Litbang Balai Besar Kulit & Tekstil Yogyakarta, ISBN 979-8379-08-3 [18] Puspitasari A (2007). Pembuatan Dan Pemanfaatan Kitosan Sulfat Dari Cangkang Bekicot (Achatina Fullica) Sebagai Adsorben Zat Warna Remazol Yellow Fg 6, Skripsi UNS Surakarta [19] Sari, TI, Ali F., dan Rafsanjani, B. (2006), “Pembuatan Karbon Aktif dari Ampas Tebu dan Aplikasinya dalam Pengolahan Limbah Cair”, Jurnal Teknik Kimia no. 4 Vol 10, hal 1-1-6, Universitas Sriwijaya Palembang. [20] Sastrohamidjoyo H., 2001, Spektroskopi, Liberty, Yogyakarta [21] Soedarsono dan Syahputra, B (2007), “Pengolahan Air Limbah Batik dengan Proses Kombinasi Elektrokimia, Filtrasi dan Adsorbsi”, Laporan Penelitian, Fakultas Teknik, Jurusan Teknik Lingkungan, Universitas Sultan Agung, Semarang. [22]Widodo A, Mardiah, dan Andy Prasetyo, (2005), “Potensi Kitosan Dari Sisa Udang Sebagai Koagulan Logam berat Limbah Cair Industri Tekstil” , Jurnal Teknik Kimia, ITS, Surabaya. | en_US |
dc.description.abstract | It has been modeled Wastewater Treatment
Plant (WWTP) and conducted experiments of
wastewater treatment in Kampung Batik Laweyan solo
using a model of the WWTP. WWTP consists of three
tubs, where number 1 of tub is used to hold
unprocessed waste, number 2 is used for coagulation
and number 3 is used for the process of sedimentation.
Sewage treatment experiment conducted by flowing
sewage from number 1 of tub the nember 2. In the
number 2 of tub, Chitosan Sulfate added and stirring,
after which the sewage flowed into the number 3.
Number 3 of tub is a sectional tub so that clots will hit
the bulkhead and then a process of sedimentation. The
output of the number 3 is the waste that has been
processed and then analyzed its COD parameter.
The experiments made from the variation of waste flow
rate and the speed of affixing chitosan sulfate.
Variations in flow rate of the waste that is: 2 L / h, 3 L /
h, 4 L / h, 5 L / h and 6 L / h. For each flow rate of the
waste created variation rate of addition of chitosan
sulfate, that is 50 mg / min, 100 mg / min, 200 mg / min,
300 mg / min and 400 mg / min. For each variation of
these experiments determined the percentage reduction
in COD.
Consider from the waste flow rate, the experimental
results showed that the greater of the flow rate causes
the smaller of the percentage of COD reduction, where
the percentage reduction in COD seen constant starting
at a flow rate of waste 3 liter / hour.
Consider from the rate of Chitosan Sulfate addition,
experimental results show that the faster addition of
chitosan sulfate causes percentage reduction in COD
greater, where the percentage reduction in COD seen
constant starting at a speed addition of Chitosan
Sulfate 300 mg / min.It can be concluded that the
optimum flow rate of the waste is 3 liters / hour, while
the optimum speed of Chitosan Sulfate affixing is 300
mg / min.
Keywords: chitosan, chitosan sulfate, coagulation,
COD | en_US |