Show simple item record

dc.contributor.authorNugroho, Aris Widyo
dc.date.accessioned2014-12-04T03:19:52Z
dc.date.available2014-12-04T03:19:52Z
dc.date.issued2014-11-25
dc.identifier.citationAshby, M. F., Evans, A., Fleck, N. A., Gibson, L. J., Hutchinson, J. W. & Wadley, H. N. G. 2000. Metal foams : A design guide, Butterworth-Heinemann: Burlington.`gb nhbv. Bafti, H. and Habibolahzadeh A. , 2010, Production of aluminum foam by spherical carbamide space holder technique-processing parameters, Materials and Design, 31 , 4122–4129 Bakan, H.I., 2006, A novel water leaching and sintering process for manufacturing highly porous stainless steel. Scripta Materialia;55:203–6. Erk, K. A., Dunand, D. C. & Shull, K. R. 2008. Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2. Acta materialia, 56, 5147-5157. Güden, M., Çelik, E. & Inodot, A. 2007. Effects of compaction pressure and particle shape on the porosity and compression mechanical properties of sintered Ti6Al4V powder compacts for hard tissue implantation. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85, 547-555. Gulsoy, H.Ö, German R.M., 2008, Sintered foams from precipitation hardened stainless steel powder. Powder Metall 2008;51(4):350–3. Ito, K. & Kobayashi, H. 2006. Production and fabrication technology development of aluminum useful for automobile lightweighting. Advanced engineering materials, 8, 828-835. Jee, C. S. Y., Ozguven, N., Guo, Z. X. & Evans, J. R. G. 2000. Preparation of high porosity metal foam. Metallurgical Materials Transaction, 31B, 1345-1352. Jorgensen, D. J. & Dunand, D. C. 2011. Structure and mechanical properties of Ti–6Al–4V with a replicated network of elongated pores. Acta materialia, 59, 640-650. Kwok, P. J., Oppenheimer, S. M. & Dunand, D. C. 2008. Porous Titanium by electro-chemical Dissolution of Steel Space-holders. Advanced engineering materials, 10, 820-825. Lee, J., Kim, H. & Koh, Y. 2009. Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer. Materials Letters, 63, 1995-1998. Lu, T., Stone, H. & Ashby, M. 1998. Heat transfer in open-cell metal foams. Acta materialia, 46, 3619-3635. Murray, N. & Dunand, D. 2006. Effect of initial preform porosity on solid-state foaming of titanium. Journal of Materials Research, 21, 1175-1188. Nugroho, A., Leadbeater, G. & Davies, I. 2010. Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique. Journal of Materials Science: Materials in Medicine, 21, 3103-3107. Oh, I. H., Nomura, N., Masahashi, N. & Hanada, S. 2003. Mechanical properties of porous titanium compacts prepared by powder sintering. Scripta Materialia, 49, 1197-1202. Tang, H. P., Zhu, J. L., Wang, J. Y., Ge, Y. & Li, C. Year. Sound Absorption Characters of Metal Fibrous Porous Material. In: Lefebvre, L. P., Banhart , J. & Dunand , D. C., eds. Proceedings of the Fifth International Conference on Porous Metals and Metallic Foams, 2008 Montreal Canada. DEStech Publication, Inc, p.181. Wang, X., Li, Y., Xiong, J., Hodgson, P. D. & Wen, C. E. 2009. Porous TiNbZr alloy scaffolds for biomedical applications. Acta Biomaterialia, 5, 3616-3624.en_US
dc.identifier.issn2339-028X
dc.identifier.urihttp://hdl.handle.net/11617/5018
dc.description.abstractPenelitian untuk mengembangkan fabrikasi aluminum berpori dengan teknik metalurgi serbuk dengan space holder paduan Pb-Sn telah dilakukan. Serbuk aluminum berbentuk flake dicampur dengan tiga variasi fraksi massa paduan Pb-Sn sebagai space holder. Campuran tersebut kemudian dikompaksi dengan tekanan 300 kg/cm2 sehingga membentuk green body. Spesimen diperoleh setelah sintrering dua tahap dilakukan atas green body yaitu sintering suhu rendah (200oC), dan dilanjutkan dengan sintering pada suhu (550oC). Spesimen diuji struktur mikro dengan mikroskop optik dan ditentukan porositasnya dengan penimbangan dan pengukuran dimensinya. Sedangkan kekuatan tarik dan modulus elastisitas diperoleh dari uji tekan menggunakan universal testing machine. Hasil penelitian menunjukkan bahwa aluminum berpori dapat diproduksi, dengan porositas mencapai 31,2% pada fraksi massa space holder sebesar 0.34. Kurva tegangan-regangan yang dihasilkan dari pengujian kuat tekan berbentuk plateau dan menunjukkan bahwa nilai kekuatan menurun seiring dengan peningkatan porositas material.en_US
dc.publisherUniversitas Muhammadiyah Surakartaen_US
dc.subjectaluminum foamen_US
dc.subjectmaterial berporien_US
dc.subjectmetalurgi serbuken_US
dc.subjectspace holderen_US
dc.titlePengembangan Material Porous Aluminum Menggunakan Teknik Metalurgi Serbuk dengan Space Holder Paduan Pb-Snen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record