dc.identifier.citation | 1. Park, K. and Y. Yeo, Microencapsulation Technology, in Encyclopedia of Pharmaceutical Technology, J. Swarbrick, Editor. 2007, Informa Healthcare: New York. p. 23152327. 2. Chau, D.Y.S., K. Agashi, and K.M. Shakesheff, Microparticles as tissue engineering scaffolds: manufacture, modification and manipulation. Materials Science and Technology, 2008. 24(9): p. 1031-1044. 3. Gaskell, E.E., et al., Encapsulation and release ofα-chymotrypsin from poly(glycerol adipate-co-ωpentadecalactone) microparticles. Journal of Microencapsulation, 2008. 25(3): p. 187-195. 4. Li, S., Stem Cell and Tissue Engineering. 2011, River Edge, NJ, USA: World Scientific & Imperial College Press. 5. Dhandayuthapani, B., et al., Polymeric Scaffolds in Tissue Engineering Application: A Review. International Journal of Polymer Science, 2011. 2011: p. 1-19. 6. Bielby, R., et al., In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng, 2004. 10: p. 1518 - 1525. 7. Marolt, D., M. Knezevic, and G. Vunjak-Novakovic, Bone tissue engineering with human stem cells. Stem Cell Research & Therapy, 2010. 1(2): p. 10. 8. Eijken, M., et al., The essential role of glucocorticoids for proper human osteoblast differentiation and matrix mineralization. Molecular and Cellular Endocrinology, 2006. 248(1–2): p. 8793. 9. Phillips, J.E., Glucocorticoid-induced osteogenesis is negatively regulated by Runx2/Cbfa1 serine phosphorylation. Journal of Cell Science, 2006. 119(3): p. 581-591. 10. Nuttelman, C.R., M.C. Tripodi, and K.S. Anseth, Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. Journal of Biomedical Materials Research Part A, 2006. 76A(1): p. 183-195. 11. Sannino, A., C. Demitri, and M. Madaghiele, Biodegradable Cellulosebased Hydrogels: Design and Applications. Materials, 2009. 2(2): p. 353-373. 12. Kadajji, V.G. and G.V. Betageri, Water Soluble Polymers for Pharmaceutical Applications. Polymers, 2011. 3(4): p. 1972-2009. 13. Gaskell, E.E., et al., Encapsulation and release of alpha-chymotrypsin from poly(glycerol adipate-co-omegapentadecalactone) microparticles. Journal of Microencapsulation, 2008. 25(3): p. 187-195. 14. Fredenberg, S., et al., The mechanisms of drug release in poly(lactic-coglycolic acid)-based drug delivery systems—A review. International Journal of Pharmaceutics, 2011. 415(1–2): p. 34-52. 15. Mehta, R.C., B.C. Thanoo, and P.P. Deluca, Peptide containing microspheres from low molecular weight and hydrophilic poly(d,l-lactide-coglycolide). Journal of Controlled Release, 1996. 41(3): p. 249-257. 16. Sansdrap, P. and A.J. Moës, Influence of manufacturing parameters on the size characteristics and the release profiles of nifedipine from poly(DL-lactide-coglycolide) microspheres. International Journal of Pharmaceutics, 1993. 98(1– 3): p. 157-164. 17. Aravand, M.A. and M.A. Semsarzadeh, Particle Formation by Emulsion Inversion Method: Effect of the Stirring Speed on Inversion and Formation of Spherical Particles. Macromolecular Symposia, 2008. 274(1): p. 141-147. 18. Lee, S.C., et al., Quantitative analysis of polyvinyl alcohol on the surface of poly(d,l-lactide-co-glycolide) microparticles prepared by solvent evaporation method: effect of particle size and PVA concentration. Journal of Controlled Release, 1999. 59(2): p. 123132. 19. Yeo, Y. and K. Park, Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Archives of Pharmacal Research, 2004. 27(1): p. 1-12. | en_US |