Show simple item record

dc.contributor.authorFayeldi, Trija
dc.date.accessioned2015-04-18T07:37:34Z
dc.date.available2015-04-18T07:37:34Z
dc.date.issued2015-03-07
dc.identifier.citation[1]Saad Y, Schultz M H. 1986.GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7: 856-869. [2]Salkuyeh , Davod Khojasteh. 2007.Generalized Jacobi and Gauss-Seidel Methods for Solving Linear System of Equations.Numer. Math. J. Chinese Univ. (English Ser.). Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UMS 2015 814 16: 164-170. [3]van der Vorst H A. 1992.Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 12: 631- 644. [4]Yang, Won-young. 2005.Applied Numerical Methods Using Matlab. New Jersey: John Wiley and Sons.in_ID
dc.identifier.isbn978.602.361.002.0
dc.identifier.urihttp://hdl.handle.net/11617/5733
dc.description.abstractDifferential equations are equations that involve an unknown function and derivatives.There will be times when solving the exact solution for the equation may be unavailable. At these times explicitand implicit methods will be used in place of exact solution.By manipulating such methods, one can find ways to provide goodapproximations compared to the exact solution.In some cases, manipulating such methods leads to a linear equation systems. The Jacobi and Gauss-Seidel method are two of the most famous numerical method for solving linear equation systems The diagonal dominance of the matrix is necessary condition before applying both methods. In this paper, we implement Jacobi and Gauss-Seidel methods for solving Poisson equation. We use literature study to investigate the problem. Some numerical experiments in various step size are given to show the difference of both methods on their computation time and number of iteration. From numerical experiments, it is shown that choosing step size influences both the computation time and number of iteration.in_ID
dc.language.isoidin_ID
dc.publisherUniversitas Muhammadiyah Surakartain_ID
dc.subjectJacobiin_ID
dc.subjectGauss-Seidelin_ID
dc.subjectPoisson equationin_ID
dc.subjectcomputation timein_ID
dc.titlePenerapan Skema Jacobi dan Gauss Seidel pada Penyelesaian Numerik Persamaan Poissonin_ID
dc.typeArticlein_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record