Show simple item record

dc.contributor.authorHasbiollah, Muh.
dc.contributor.authorHakim, RB. Fajriya
dc.date.accessioned2015-04-25T07:32:56Z
dc.date.available2015-04-25T07:32:56Z
dc.date.issued2015-03-07
dc.identifier.citation[1] Aladag, C. H., U. Yolcu dan E. Egrioglu. 2010. A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural networks. Mathematics and Computers in Simulation. 81: 875–882. [2] Chen, S. M.. 1996. Forecasting enrollments based on fuzzy time series. Fuzzy Sets and Systems. 81: 311-319. [3] Chen, S. M.. 2000. Temperature Prediction using Fuzzy Time Series. IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics. 30: 263-275. [4] Chen, S. M. dan C. C. Hsu. 2004. A New Method to Forecast Enrollments Using Fuzzy Time Series. International Journal of Applied Science and Engineering. 3: 234-244. [5] Egrioglu, E.. 2014. A New Fuzzy Time Series Method Based On Artificial Bee Colony Algorithm. Turkish Journal of Fuzzy Systems. 5: 59-77. [6] Hapsari, Heni. 2011. Aplikasi Fuzzy Inference System Metode Mamdani Untuk Pemilihan Jurusan Diperguruan Tinggi (Studi Kasus SMA N 1 Kutowinangun Kebumen). [Skripsi]. Yogyakarta. Universitas Islam Negeri Sunan Kalijaga. [7] Lamabelawa, M. I. J.. 2011. Metode Fuzzy Time Series untuk Peramalan Data Runtun Waktu (Studi kasus: Produk Domestik Bruto Indonesia). [Tesis]. Yogyakarta. Universitas Gadjah Mada. [8] BP. 2014. BP Statistical Review of World Energy. www.bp.com/stasticalreview. (Diakses Pada Tanggal 20 Desember 2014). [9] Makridakis S, Steven C, Wheelwright, Victor E and Mc Gee, 1999. Metode dan Aplikasi Peramalan Jilid I. Edisi Kedua. Binarupa Aksara: Jakarta. [10] Olatayo, T.O. dan A.I. Taiwo. 2014. Statistical Modelling and Prediction of Rainfall Time Series Data. Global Journal of Comuter Science and Technology:G Interdisciplinary. 14:1-10. ISBN : 978.602.361.002.0 Prosiding Seminar Nasional Matematika dan Pendidikan Matematika UMS 2015 518 [11] Puspitasari, E., L. Linawati dan H. A. Parhusip. 2012. Peramalan Persentase Perubahan Data Indeks Harga Saham Gabungan (IHSG) dengan Fuzzy Time Series. Prosiding Seminar Nasional Sains dan Pendidikan Sains VII UKSW. 223-229. [12] Singh, S. R.. 2007. A Simple Time Variant Method for Fuzzy Time Series Forecasting. Cybermetics and System: An Int. Journal. 38: 305-321. [13] Sivasamy, R. dan N. O. Ama. 2014. Mixed Average-Based Fuzzy Time Series Models For Forecasting Future Civilian Fatalities By Terrorist Attacks In South Asia. International Journal of Physics and Mathematical Sciences. 4: 20-25. [14] Song, Q. dan B. S. Chissom. 1993a. Fuzzy time series and its models. Fuzzy Sets and systems. 54: 269-277. [15] Song, Q. dan B. S. Chissom. 1993b. Forecasting enrollments with fuzzy time series: Part I. Fuzzy Sets and systems. 54: 1-9. [16] Song, Q. dan B. S. Chissom. 1994. Forecasting enrollments with fuzzy time series: Part II. Fuzzy Sets and systems. 62: 1-8. [17] Stevenson, M. dan J. E. Porter. 2009. Fuzzy time series forecasting using percentage change as the universe of discourse. Proceedings of World Academy of Science,Engineering and Technology. 55: 154157. [18] Tauryawati, M. L. dan M. I. Irawan. 2014. Perbandingan Metode Fuzzy Time Series Cheng dan Metode Box-Jenkins untuk Memprediksi IHSG. Jurnal Sains Dan Seni Pomits. 3: 34-39. [19] Tsaur, R. C.. 2011. A Fuzzy Time Series Markov Chain Model With An Application to Forecast The Exchange Rate Between The Taiwan and US Dollar. ICIC International. 8: 4931-4942. [20] Tsaur, R. C.. 2014. Residual Analysis Using Fourier Series Transform In Fuzzy Time Series Model. Iranian Journal of Fuzzy Systems. 11: 43-54. [21] Tsaur, R.C. dan T. C. Kuo. 2014. Tourism Demand Forecasting Using A Novel High-Precision Fuzzy Time Series Model. International Journal of Innovative Computing, Information and Control. 10: 695701.in_ID
dc.identifier.issn978.602.361.002.0
dc.identifier.urihttp://hdl.handle.net/11617/5818
dc.description.abstractThere are some techniques of soft computing that can be used to forecast the data, they are fuzzy time series, neural network, and genetic algorithm. The methods can solve the data forecasting in the complex model that related to non linear time series model. In this research, the forecasting method that used is the Algorithm of Fuzzy Time Series Using Percentage Change As Universe Discourse that proposed by Stevenson and Porter who will compared with one of the classical forcasting method. The data that used is data of Indonesia gas consumption years 1990-2013, where the data contain trend pattern. For that, one of the good classical forecasting method that can be used is the method of Double Exponential Smoothing Holt. The results, forcasting by using the Algorithm of Fuzzy Time Series Stevenson Porter is better compared with using the method of Double Exponential Smoothing Holt, because it has smaller MAPE and MSE value, each of them in a row are 6,56 and 4,93. Where obtained the forecasting result for year 2014 is 38,39in_ID
dc.language.isoidin_ID
dc.publisherUniversitas Muhammadiyah Surakartain_ID
dc.subjectFuzzy Time Seriesin_ID
dc.subjectGas Consumptionin_ID
dc.subjectIndonesiain_ID
dc.subjectSoft Computingin_ID
dc.titlePeramalan Konsumsi Gas Indonesia Menggunakan Algoritma Fuzzy Time Series Stevenson Porterin_ID
dc.typeArticlein_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record