Show simple item record

dc.contributor.authorVitasari, Denny
dc.contributor.authorHarismah, Kun
dc.date.accessioned2015-10-31T02:31:36Z
dc.date.available2015-10-31T02:31:36Z
dc.date.issued2015-07-30
dc.identifier.citationAdamczyk, Z., & Petlicki, J. (1987). Adsorption and desorption kinetics of molecules and colloidal particles. Journal of Colloid and Interface Science, 118(1), 20–49. doi:DOI: 10.1016/0021-9797(87)90433-4 Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces. Wiley. Borwankar, R. P., & Wasan, D. T. (1988). Equilibrium and dynamics of adsorption of surfactants at fluid-fluid interfaces. Chemical Engineering Science, 43(6), 1323–1337. Burghoff, B. (2012). Foam fractionation applications. Journal of Biotechnology, 161(2), 126–137. doi:http://dx.doi.org/10.1016/j.jbiotec.2012.03.008 Adamczyk, Z., & Petlicki, J. (1987). Adsorption and desorption kinetics of molecules and colloidal particles. Journal of Colloid and Interface Science, 118(1), 20–49. doi:DOI: 10.1016/0021-9797(87)90433-4 Adamson, A. W., & Gast, A. P. (1997). Physical chemistry of surfaces. Wiley. Borwankar, R. P., & Wasan, D. T. (1988). Equilibrium and dynamics of adsorption of surfactants at fluid-fluid interfaces. Chemical Engineering Science, 43(6), 1323–1337. Burghoff, B. (2012). Foam fractionation applications. Journal of Biotechnology, 161(2), 126–137. doi:http://dx.doi.org/10.1016/j.jbiotec.2012.03.008 Chang, C. H., & Franses, E. I. (1995). Adsorption dynamics of surfactants at the air/water interface: A critical review of mathematical models, data, and mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 100, 1–45. Ferri, J. K., & Stebe, K. J. (2000). Which surfactants reduce surface tension faster? {A} scaling argument for diffusion-controlled adsorption. Advances in Colloid and Interface Science, 85(1), 61–97. doi:DOI: 10.1016/S0001-8686(99)00027-5 Fick, A. (1855). On liquid diffusion. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(63), 30–39. Gerken, B. M., Nicolai, A., Linke, D., Zorn, H., Berger, R. G., & Parlar, H. (2006). Effective enrichment and recovery of laccase C using continuous foam fractionation. Separation and Purification Technology, 49(3), 291–294. doi:http://dx.doi.org/10.1016/j.seppur.2005.09.015 Jin, F., Balasubramaniam, R., & Stebe, K. J. (2004). Surfactant Adsorption To Spherical Particles: the Intrinsic Length Scale Governing the Shift From Diffusion To Kinetic-Controlled Mass Transfer. The Journal of Adhesion, 80(932319487), 773–796. doi:10.1080/00218460490480770 Lemlich, R. (1968a). Adsorptive Bubble Separation Methods: Foam Fractionation and Allied Techniques. Industrial and Engineering Chemistry, 60(10), 16–29. Lemlich, R. (1968b). Principles of Foam Fractionation. In E. S. Perry (Ed.), Progress in Separation and Purification (Vol. 1, pp. 1–56). New York: Interscience. Maldonado-Valderrama, J., & Langevin, D. (2008). On the Difference between Foams Stabilized by Surfactants and Whole Casein or β-Casein. Comparison of Foams, Foam Films, and Liquid Surfaces Studies. The Journal of Physical Chemistry B, 112(13), 3989–3996. doi:10.1021/jp7112686 Uraizee, F., & Narsimhan, G. (1990). Foam fractionation of proteins and enzymes: I. Applications. Enzyme and Microbial Technology, 12(3), 232–233. doi:DOI: 10.1016/0141-0229(90)90045-R Ward, A. F. H., & Tordai, L. (1946). Time-Dependence of Boundary Tensions of Solutions I. The Role of Diffusion in Time-Effects. Journal of Chemical Physics, 14(7), 453–461. doi:10.1063/1.1724167 Weaire, D. L., & Hutzler, S. (2001). The Physics of Foams. Oxford University Press. Yeo, L. Y., Matar, O. K., de Ortiz, E. S. P., & Hewitt, G. F. (2003). Film drainage between two surfactant-coated drops colliding at constant approach velocity. Journal of Colloid and Interface Science, 257, 93–107. doi:http://dx.doi.org/10.1016/S0021-9797(02)00033-4 Zhang, F., Wu, Z., Yin, H., & Bai, J. (2010). Effect of ionic strength on the foam fractionation of BSA with existence of antifoaming agent. Chemical Engineering and Processing: Process Intensification, 49(10), 1084–1088. doi:10.1016/j.cep.2010.07.016in_ID
dc.identifier.issn2339-028X
dc.identifier.urihttp://hdl.handle.net/11617/6216
dc.description.abstractThe dynamics of adsorption of surfactant on a bubble surface in a foam fractionation column is simulated mathematically. The model for the adsorption dynamics is developed based on the Fick’s Law and verified using the Ward-Tordai equation as well as analytical solution of the diffusion equation using Laplace transformation. The adsorption isotherm is modelled using the Henry isotherm and the Langmuir isotherm. The analytical solution using the Laplace transformation confirms the numerical solution using the Henry isotherm. Manipulation of the Laplace transformation of the diffusion equation using the Henry isotherm, and solution of the rearranged equation using convolution results in theWard-Tordai equation. At high bulk concentration, it is obtained that the adsorption rate using the Langmuir isotherm is greater than the adsorption rate using the Henry isotherm. At early time, the surface concentration is proportional to square root of time, a fact which is evident from direct inspection of the Ward-Tordai equation.in_ID
dc.language.isoenin_ID
dc.publisherUniversitas Muhammadiyah Surakartain_ID
dc.subjectadsorptionin_ID
dc.subjectsurfactantin_ID
dc.subjectbubble surfacein_ID
dc.subjectWard-Tordai equationin_ID
dc.titleDynamics of Adsorption of Surfactant on A Bubble Surface in A Foam Fractionation Columnin_ID
dc.typeArticlein_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record