Show simple item record

dc.contributor.authorSartono
dc.date.accessioned2016-03-31T07:25:19Z
dc.date.available2016-03-31T07:25:19Z
dc.date.issued2016-03-12
dc.identifier.citationAkaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving-average models. Biometrika, 60, 255-266. Ardebili, M., Hashemi, M., Shahabi, A., & Barough, M. (2015). Optimized selection of stock portfolio by using the fuzzy artificial neural networks web model, ARIMA & markowitz model in tehran stock exchange. European Online Journal of Natural and Social Sciences, 4(1), 831-844. Box, G., Jenkins, G., & Reinsel, G. (1994). Time Series Analysis, Forecasting and Control. Prentice-Hall, Englewood Cliffs, NJ. BPS. (2015). Data distribusi barang dengan menggunakan jasa kereta api untuk wilayah Jawa dan Sumatera. Chatfield, C. (2000). Time-Series Forecasting. New York: Chapman & Hall. Cowpertwait, P., & Metcalfe, A. (2009). Introductory Time Series with R. New York: Springer. Dickey, D., & Fuller, W. (1979). Distribution of the estimates for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427--431. Holens, G. (1997). Forecasting and selling futures using ARIMA models and a neural network. ProQuest, (304378804). JPNN. (2015, April 27). Perkembangan Bisnis e-Commerce di Indonesia Melesat. Dipetik Januari 25, 2016, dari http://www.jpnn.com/read/2015/04/27/300672/Perkembangan-Bisnis-eCommerce-di-Indonesia-Melesat- KAI. (2016). Pelayanan Angkutan. Dipetik Januari 25, 2016, dari http://kargo.keretaapi.co.id/. Kominfo. (2016, Januari 22). Komitmen Kominfo Kembangkan e-Commerce. Dipetik Januari 25, 2016, dari http://kominfo.go.id/index.php/content/detail/6622/Komitmen+Kominfo+Kemba ngkan+%3Ci%3Ee-Commerce%3C-i%3E/0/berita_satker#.VqWcxlIavnI Ljung, G., & Box, G. (1978). On a measure of lack of time series models. Biometrika, 553-564. McLeod, A., & Li, W. (1983). Diagnostic checking ARMA timeseries models using squared residual autocorrelations. Journal of Time Series Analysis, 4, 269-273. Reza, R. M. (2015). Forecasting travel time and variations in travel time due to vehicle accidents in spatio-temporal context along freeway. ProQuest, (1752635231). Shabri, A., & Samsudin, R. (2014). Crude oil price forecasting based on hybridizing wavelet multiple linear regression model, particle swarm optimization techniques, and principal component analysis. The Scientific World Journal, doi:http://dx.doi.org/10.1155/2014/854520. Sterba, J., Rublíková, E., & y Ocerín, J. (2012). Hybrid ARIMA-neural network model for prediction of water consumption aggregate. Social Science Letters, 2(2), 1420.in_ID
dc.identifier.issn2502-6526
dc.identifier.urihttp://hdl.handle.net/11617/7024
dc.description.abstractBusiness on delivery sector has been growth recently, especially using railway. The development of infrastructures and facilities must be managed efficiently considering to an accurate information about the future need based on a historical data analysis. This article tried to develop models which can be used by decision makers to determine a reasonable plan to improve the profit. The Box-Jenkins method was employed to develop a model of historical data of goods distribution using train for Java and Sumatera area. The residuals was maintained using the GARCH model. This model was compared to the Trend and Seasonal Linear Model (TSLM) by evaluating the mean of absolute errors (MAE) and the root of mean squared errors (RMSE). The result shows that the ARIMA+GARCH model did better than ARIMA, SARIMA, and TSLM in predicting one and three month ahead for Java area, while the TSLM was more suitable for six and nine month forecasting than the others. On the other hand, the linear model provided the least values of MAE and RMSE for one, three, six, and nine month ahead prediction for Sumatera area.in_ID
dc.language.isoidin_ID
dc.publisherUniversitas Muhammadiyah Surakartain_ID
dc.subjectARIMAin_ID
dc.subjectlinear modelin_ID
dc.subjectshipping by trainin_ID
dc.subjecttime series analysisin_ID
dc.subjecttrend and seasonalin_ID
dc.titlePemodelan Untuk Pengiriman Barang Dengan Memanfaatkan Jasa Kereta Api di Jawa dan Sumaterain_ID
dc.typeArticlein_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record