Show simple item record

dc.contributor.authorKartikasari, Ratna
dc.date.accessioned2012-04-08T10:48:01Z
dc.date.available2012-04-08T10:48:01Z
dc.date.issued2009-01
dc.identifier.citationAvner, H.S., 1987, Introduction to Physical Metallurgy, McGraw-Hill Inc., Singapure. Baligidad, R.G., Prakash, U., Ramakrishna Rao, V., Rao, P.K., and Ballal N.B., 1996, Effect of Carbon Content on Mechanical Properties of Electroslag Remelted Fe3Al Based Intermetallic alloys, Vol. 36, No. 12, 1453-1458. Baligidad, R.G., Prakash, U., and Radha Krishna, 1998, Effect of Carbon Addition on Structure and Mechanical Properties of Electroslag Remelted Fe-20wt.%Al alloy, Vol. 249, No. 1-2, 97-102. Chao, Y.C., and Liu, C.H., 2002, Effect of Mn Content on the Micristructure and Mechanical Properties of Fe-10Al-xMn-1.0C Alloy, Materials Transactions, Vol. 3, No. 10, pp. 2635-2642. Davidson, R.M., DeBold, T. dan Johnson, M.J, 1988, Corrosion of Stainless Steel, dalam ASM Handbook, Metals Park, Ohio Environmentalchemistry.com, 2008, Environmental, Chemistry & Hazardous Materials News, Careers & Resources, Periodic Table of Elements. Fontana, G.M., 1988, Corrosion Engineering, 3th ed., McGraw Hill Inc., Singapore. Frommeyer, 2000, Physical and Mechanical Properties of Iron-Aluminium-(Mn-Si) Lightweight Steels, The 1999 ATS International Steelmaking Conference, Paris. Sec.4. Honeycombe, R.W.K. dan Bhadeshia, H.K.D.,1995, Steel Microstructure and Properties, 2nd ed., Edward Arnold, London. Huang, B.X., Wang, X.D., Rong,Y.H., Wang, L., and Jin, L., 2006, Mechanical Behavior and Martensitic Transformation of an Fe-Al-Si-Al-Nb Alloy, Materials Science and Engineering A, Vol. 438-440, p. 306-311. Kobayashi, S., Zaefferer, S., Schneider, A., Raabe, D., and Frommeyer, G., 2005, Optimisation of Precipitation for Controlling Recrystallization of Wrought Fe3Al Based Alloys, Intermetallics, 13, 1296-1303. Leslie, T., 1983, The Physical Metallurgi of Steels, John Willey and Sons Inc., New York. Prakash, U. Buckley, R.A., Jones, H. and Sellars, C.M., 1991, Structure and Properties of Ordered Intermetallics Based on the Fe-Al System, ISIJ Int., vol 31, no. 10, 1113-1126. Shackelford, J.F., 1992, Introduction to Material Science for Engineers, 3th ed., McMillan Publishing Company, New York. Sikka, V.K., Viswanathan, S., and McKamey, C.G., 1993, in ‘Structural Intermetallic’, (ed. R. Darolia et al.), Warrendale, PA, TMS. pp. 483-491 Tjong, S.C., 1986, Stress Corrosion Cracking behavior of the duplex Fe-10Al-29Mn-0,4C alloy in 20% NaCl solution at 100oC, Journal of Material Science, Vol. 21, Hal.: 1166- 1170Avner, H.S., 1987, Introduction to Physical Metallurgy, McGraw-Hill Inc., Singapure. Baligidad, R.G., Prakash, U., Ramakrishna Rao, V., Rao, P.K., and Ballal N.B., 1996, Effect of Carbon Content on Mechanical Properties of Electroslag Remelted Fe3Al Based Intermetallic alloys, Vol. 36, No. 12, 1453-1458. Baligidad, R.G., Prakash, U., and Radha Krishna, 1998, Effect of Carbon Addition on Structure and Mechanical Properties of Electroslag Remelted Fe-20wt.%Al alloy, Vol. 249, No. 1-2, 97-102. Chao, Y.C., and Liu, C.H., 2002, Effect of Mn Content on the Micristructure and Mechanical Properties of Fe-10Al-xMn-1.0C Alloy, Materials Transactions, Vol. 3, No. 10, pp. 2635-2642. Davidson, R.M., DeBold, T. dan Johnson, M.J, 1988, Corrosion of Stainless Steel, dalam ASM Handbook, Metals Park, Ohio Environmentalchemistry.com, 2008, Environmental, Chemistry & Hazardous Materials News, Careers & Resources, Periodic Table of Elements. Fontana, G.M., 1988, Corrosion Engineering, 3th ed., McGraw Hill Inc., Singapore. Frommeyer, 2000, Physical and Mechanical Properties of Iron-Aluminium-(Mn-Si) Lightweight Steels, The 1999 ATS International Steelmaking Conference, Paris. Sec.4. Honeycombe, R.W.K. dan Bhadeshia, H.K.D.,1995, Steel Microstructure and Properties, 2nd ed., Edward Arnold, London. Huang, B.X., Wang, X.D., Rong,Y.H., Wang, L., and Jin, L., 2006, Mechanical Behavior and Martensitic Transformation of an Fe-Al-Si-Al-Nb Alloy, Materials Science and Engineering A, Vol. 438-440, p. 306-311. Kobayashi, S., Zaefferer, S., Schneider, A., Raabe, D., and Frommeyer, G., 2005, Optimisation of Precipitation for Controlling Recrystallization of Wrought Fe3Al Based Alloys, Intermetallics, 13, 1296-1303. Leslie, T., 1983, The Physical Metallurgi of Steels, John Willey and Sons Inc., New York. Prakash, U. Buckley, R.A., Jones, H. and Sellars, C.M., 1991, Structure and Properties of Ordered Intermetallics Based on the Fe-Al System, ISIJ Int., vol 31, no. 10, 1113-1126. Shackelford, J.F., 1992, Introduction to Material Science for Engineers, 3th ed., McMillan Publishing Company, New York. Sikka, V.K., Viswanathan, S., and McKamey, C.G., 1993, in ‘Structural Intermetallic’, (ed. R. Darolia et al.), Warrendale, PA, TMS. pp. 483-491 Tjong, S.C., 1986, Stress Corrosion Cracking behavior of the duplex Fe-10Al-29Mn-0,4C alloy in 20% NaCl solution at 100oC, Journal of Material Science, Vol. 21, Hal.: 1166- 1170en_US
dc.identifier.issn1411-4348
dc.identifier.urihttp://hdl.handle.net/11617/778
dc.description.abstractPaduan Fe-Al-C merupakan paduan baru kandidat pengganti stainless steel konvensional, dimana unsur Al berperan menggantikan unsur mahal (Cr) pada stainless steel konvensional. Penelitian ini bertujuan untuk mengetahui pengaruh temperatur temper terhadap sifat mekanik dan ketahanan korosi paduan Fe-1,26Al-1,05C. Bahan baku peleburan terdiri dari: scrap baja Mn rendah, Al murni dan Fe-C. Peleburan menggunakan dapur induksi frekwensi tinggi kapasitas 50 kg dengan alloying di dalam ladle. Austenitisasi sampai temperatur 900oC dilanjutkan dengan quenching dalam media air. Proses temper dilakukan pada temperatur 250oC, 300oC, 350oC, 400oC dan 450oC. Pengujian yang dilakukan adalah foto struktur mikro, pengujian tarik, pengujian kekerasan dan pengujian korosi dalam media 3,5% NaCl dengan metoda kehilangan berat. Hasil pengamatan struktur mikro menunjukkan bahwa paduan Fe- 1,26Al-1,05C as cast mempunyai struktur ferit dan perlit, kecenderungan pembentukan struktur ferit terjadi dengan semakin tinggi temperatur temper. Kekuatan tarik maksimum terjadi setelah hardening yaitu sebesar 82,7kg/mm2 dengan regangan tertinggi sebesar 47,2% setelah temper 450oC. Kekerasan tertinggi sebebesar 287,1 VHN terjadi setelah hardening. Hasil pengujian korosi menunjukkan bahwa laju korosi paduan 1,26Al-1,05C as cast akan menurun dengan semakin tinggi temperatur temper.en_US
dc.subjectpaduan Fe-Al-Cen_US
dc.subjectstainless steel konvensionalen_US
dc.subjectalloying, temperen_US
dc.titleSTUDI PENGARUH TEMPERATUR TEMPER TERHADAP SIFAT MEKANIK DAN KETAHANAN KOROSI PADUAN Fe-1,26Al-1,05Cen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record