Show simple item record

dc.contributor.authorSupriyono
dc.date.accessioned2012-04-17T06:05:35Z
dc.date.available2012-04-17T06:05:35Z
dc.date.issued2008-01
dc.identifier.citation4 2D Elasticity Analysis with Boundary Element Method oleh Supriyono point-th along cross section Aliabadi, M.H., The Boundary Element Method, vol II: application to solids and structures, Chichester, Wiley (2001). Banerjee, P.K., The Boundary Element Method in Engineering, McGraw-Hill, New York (1992). Becker, A., The Boundary Element Method in Engineering, McGraw-Hill, London (1992). Betti, E., Teoria dell’elasticita’, Il Nuovo Cimento, 7-10, (1872). Brebbia, C.A., Dominguez, J., Boundary Elements, an Introductory Course, 2nd edition, Computational Mechanics Publication, Southampton, McGraw-Hill Book Company, New York, (1992). Cruse, T.A., Numerical solutions in three-dimensional elastostatics, International Journal of Solids and Structures, 5, 1259-1275, (1969). Fredholm, I., Sur une classe d’equatios fonctionelles, Acta Mathematica, 27, 365-390, (1903). Hess, J.L., and Smith, A.M.O., calculation of potential flows about arbiratry bodies, Progress in Aeronautical Sciences, 8, Perganon Press, (1967). Jaswon, M.A., Integral equation method in potential theory, I, Proceeding of the Royal Society of London, Series A, 275, 23-32, (1963). Lachat, J.C., Watson, J.O., Effective numerical treatment of boundary integral equations, International Journal for Numerical Methods in Engineering, 10, pp.991-1005, (1976). Sigma von Mises Massonnet, C.E., Numerical use of integral procedure, In Stress Analisys, Chapter 10, 198-235, Wiley, London, (1965). Mikhilin, S.G., Integral Equation, Pergamon Press, London, (1957). Rizzo, F.J., An integral equation approach to boundary-value problems of classical elastostatics, Quarterly Journal of Applied Mathematics, 25, 83-95, (1967). Somigliana, C., Sopra l’equilibrio di un corpo elastico isotropo, Il Nuovo Cimento, serie III, vol.20, 81-185,(1886). Wrobel, L.C., The Boundary Element Method, vol I: applications in thermo-fluids and acoustics, Chichester, Wiley (2001).en_US
dc.identifier.issn1411-4348
dc.identifier.urihttp://hdl.handle.net/11617/822
dc.description.abstractIn this paper, a boundary element method for 2D elasticity analysis is presented. The formulations are also presented. Numerical integration is applied to solve the boundary integral equation obtained from the formulation. Quadratic isoparametric elements are used to represent the variation of a variable along an element. Several examples are presented to demonstrate the validity and the accuracy of the method.en_US
dc.subjectelasticity-numericalen_US
dc.subjectintegration-isoparametricen_US
dc.subjectelement-boundaryen_US
dc.subjectelement methoden_US
dc.title2D ELASTICITY ANALYSIS WITH BOUNDARY ELEMENT METHODen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record