dc.identifier.citation | Ignaciuk, P, and Bartoszewicz, A. (2010). Linear-Quadratic Optimal ControlStrategy for Periodic-Review Inventory Systems. Automatica 46. pp.1982-1993. Ignaciuk, P, and Bartoszewicz, A. (2012). Linear-Quadratic Optimal Controlof Periodic-Review Perishable Inventory Systems. IEEE Transaction on Control Systems Technology Vol.20, 1400-1407 Mital, K.V. (1976). Optimization Methods in Operations Research andSystems Analysis. New Delhi : Wiley Eastern Limited Munawwaroh, Dita Anies, dan Salmah. (2014). Kendali LQR Diskrit padaSistem Pergudangan dengan Kebijakan Peninjauan Berkala. TesisProgram Pascasarjana.. UGM. Munawwaroh, Dita Anies, dan Sutrisno. (2014). Kendali LQR Diskrit untuk Sistem Transmisi Data dengan Sistem Jaringan Tunggal. Semarang : Jurnal Matematika Vol. 17 No.3. FSM UNDIP Munawwaroh, Dita Anies. (2016). Aplikasi Kendali LQR Diskrit untuk Sistem Pergudangan Barang Susut dengan Peninjauan Berkala pada radioaktif I-131. Seminar Nasional Matematika dan Perndidikan Matematika. FPMIPATI - Universitas PGRI Semarang.. Semarang, 13 Agustus 2016 Ogata,K. (1995). Discrete Time Control Systems. Prentice-Hall Olsder, G.J. (1994). Mathematical Systems Theory. The Netherlands : Delft Suyatno, Ferry. (2010). Aplikasi Radiasi dan Radioisotop dalam Bidang Kedokteran. Dipresentasikan dalam Seminar Nasional VI SDM Teknologi Nuklir, Yogyakarta, 18 November 2010. Widyaningrum, Triani, dkk. (2015). Proses Produksi 177 Lu dari Aktivasi Neutron Yb-176 Diperkaya untuk Penandaan 177 Lu-DOTA-TOC. Prosiding Seminar Nasional Kimia Diselenggarakan oleh Jurusan Kimia FMIPA Universitas Negeri Surabaya, 3-4 Oktober 2015. | in_ID |
dc.description.abstract | This research is about inventory system with periodic review policy. It will be controlled
with linear quadratic regulator to keep the inventory level. This optimal control uses discrete time
and has quadratic equation for objective function and linear equation for the constraint. The
inventory system must be satisfy the assumption that it has single supplier, perishable goods, has
a lead time, but the inventory system is not allowed lost sales. As a case study on simulation, the
author will apply to optimize the inventory systems of radioisotope Luthesium-177. Because
Luthesium-177 is a perishable goods that has a half-life 6,71 days. The uses of Luthesium-177 as
cancer therapy to destroy cancer cells. | in_ID |