Show simple item record

dc.contributor.authorSupriyono, Supriyono
dc.date.accessioned2012-04-24T04:48:47Z
dc.date.available2012-04-24T04:48:47Z
dc.date.issued2007-10
dc.identifier.citation132 Aliabadi, M.H., 1998, Plate Bending Analysis with Boundary Element, Computational MechanicsPublications, Southampton. Dirgantara, T. and Aliabadi, M.H., 2006, Boundary element formulation for geometrically non-linear analysis of shear deformable shells, Submitted for publication. Kamiya, N. and Sawaki, Y., 1982, An integral equation approach to finite deflection of elastic plates, Int. J. Non-Linear Mech., 17(3), 187-194, 19. Karam, V.J. and Telles, J.C.F., 1988, On boundary elements for Reissner’s plate theory, Engineering Analysis, 5, 21-27. Karam, V.J. and Telles, J.C.F., Nonlinear material analysis of Reissner’s plates, Plate Bending Analysis with Boundary Element, 127-163, Computational Mechanics Publications, Southampton (1998). Kirchhoff, G., 1850, Uber das gleichgewicht und die bewegung einer elastischen scheibe, J.Rein Angew Math., 40, 51-88. Lei, X.Y., Huang, M.K. andWang, X.X., 1990, Geometrically nonlinear analysis of a Reissner’s type plate by boundary element method, Comput. Struct., 37(6), 911-916. Naghdi, P.M., On the theory of thin elastic shells, 1956, Quarterly of Applied Mathematics, 14, 369-380. Purbolaksono, J. and Aliabadi, M.H., 2005, Large deformation of shear deformable plate by boundary element method, Journal of Engineering Mathe matics. Reissner, E.,1950, On a variational theorem in elasticity, Journal of Mathematics and Physics, 29, 90-95. JURNAL TEKNIK GELAGAR Vol. 18, No. 02, Oktober 2007 : 126 - 133 Ribeiro, G.O. and Venturini,W.S., 1998, Elastoplastic analysis of Reissner’s plate using the boundary element method, Plate Bending Analysis with Boundary Element, 101- 125, Computational Mechanics Publications, Southampton. Supriyono, Aliabadi, M.H., 2006, Boundary Element Method for Shear Deformable Plates with Combined Geometric and Material Nonlinearities, Engineering Analysis with Boundary Elements, 30, 31-42. Tanaka, M., 1984, Large deflection analysis of thin elastic plates, Developments in Boundary Element Methods, Elsevier Applied Science Publishers, 13, 115-136. Wen, P.H., Aliabadi, M.H., Young, A., 2004, Large deflection analysis of Reissner plate byboundary element method, Computer & Structure.en_US
dc.identifier.issn0853-2850
dc.identifier.urihttp://hdl.handle.net/11617/955
dc.description.abstractIn this paper, a convergence study of shear deformable plates with material nonlinearity is presented. The reasons behind this study are due to some contribution made in this work. The material is assumed to undergo small strains. The von Mises criterion is used to evaluate the plastic zone and elastic perfectly plastic material behaviour is assumed. An initial stress formulation is used to formulate the boundary integral equations. The domain integral due to material nonlinearity is evaluated using a cell discretization technique and a total incremental method is implemented to solve the nonlinear system of equation.en_US
dc.subjectReissner platesen_US
dc.subjectnonlinear sytem of equationen_US
dc.subjecttotal increment methoden_US
dc.subjectplasticityen_US
dc.subjectboundary element methoden_US
dc.titleCONVERGENCE STUDY OF BOUNDARY ELEMENT METHOD FOR REISSNER PLATE WITH MATERIAL NONLINEARITYen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record