REROUTING TRAYEK ANGKUTAN UMUM

(Studi Kasus Angkutan Umum di DKI Jakarta)

REROUTING OF PUBLIC TRANSPORT

(Case Study: Public Transport in DKI Jakarta)

Nurul Hidayati ¹⁾, Sri Hendarto ²⁾, Ofyar Z. Tamin ³⁾
Staf pengajar jurusan Teknik Sipil - Universitas Muhammadiyah Surakarta, Surakarta.

Jl. A. Yani No. 1 Tromol Pos 1, Pabelan Kartasura, Surakarta 57102.

e-mail: nh_hisyam@yahoo.com

ABSTRACT

Overlapping route and low level of service of public transport is an indicator of bad operation of public transport. This condition can cause traffic jam particularly in city. The objectives of this research were detecting the route performance of public transport, rerouting and comparing some alternative routes. Multy criteria analysis method was used by considering route overlapping, volume and capacity ratio and route structure as the variables. The routes of study were route number 10, 38, 40, 58 and 213 of PPD regular big bus in DKI Jakarta. The selection of the route to be evaluated was existing route. Alternative route gave to changing by selecting of some low value road links in the route, and then it was made some possible alternative. A route was estimated with a value of W per kilometer for road links which changed or and between existing and alternative (scenario) condition difference of route distance. The better route were selected by comparing the alternatives by choosing the higher value of W per kilometer or and the higher difference of route distance. The reseach results were; PPD 10 scenario1, with 0,0213 per km a value of W per kilometer in existing1 condition to be 0,0230 per km in scenario1, PPD 38 scenario1, with 0,0213 per km a value of W per kilometer in existing 1 condition to be 0,0230 per km in scenario1, PPD 40 existing, with 0,0242 per km a value of W per kilometer in existing 1 condition to be 0,0220 per km in scenario 1 and 0,0237 per km in existing 2 condition to be 0,0235 per km in scenario2, PPD 58 scenario1, with 5,727 km difference between existing and alternative (scenario) condition of route distance in scenario1 and 1,3700 km in scenario2, while for PPD 213 scenario2, with 1,5162 km difference between existing and alternative (scenario) condition of route distance in scenario2 and 1,1696 km in scenario1.

Keywords: rerouting, route, public transport, overlapping

PENDAHULUAN

Kebutuhan angkutan penumpang di DKI Jakarta, sampai saat ini masih didominasi oleh angkutan berbasis jalan raya. Hasil studi *Jakarta Mass Transit System Study* (1992) dalam Hidayati (2003) diperoleh sekitar 95% angkutan penumpang adalah berbasis jalan raya, dengan komposisi kendaraan berdasar kepemilikannya adalah 49,1% untuk kendaraan umum dan 50,9% untuk kendaraan pribadi. Gambaran komposisi kendaraan berdasarkan kepemilikannya tersebut dapat juga dilihat pada Tabel 1.

Berdasarkan Tabel 1 dapat diketahui bahwa jumlah pengguna kendaraan pribadi mengalami peningkatan, dengan kata lain pengguna kendaraan umum mengalami penurunan. Jika hal tersebut tidak dipikirkan penyelesaiannya, akibat yang lebih jauh yaitu menurunnya efisiensi penggunaan sarana

maupun prasarana transportasi, sehingga semakin mempersulit upaya penanggulangan kemacetan.

Tabel 1. Komposisi kendaraan angkutan penumpang jalan raya di DKI Jakarta

Julius sur de de la constanción							
Tahun	Studi	Kendaraan	Kendaraan				
studi		pribadi	umum				
1972	JMATS	39,0%	61,0%				
1985	ARSDS	43,0%	57,0%				
1992	JMTSS	50,9%	49,1%				

(Sumber: Adiwianto dalam KNTJ 6, 2000)

Masyarakat umum masih banyak yang beranggapan bahwa penyebab kemacetan tersebut adalah angkutan umum. Hal ini salah satunya didasarkan pada pengoperasian angkutan umum yang dianggap masih kurang baik, salah satunya yaitu masih banyaknya trayek yang saling tumpang tindih

²⁾ Staf pengajar Pascasarjana Departemen Teknik Sipil, FTSP ITB.

³⁾ Staf pengajar Pascasarjana Departemen Teknik Sipil dan Guru Besar FTSP ITB.

(overlapping). Overlapping tersebut masih ditambah dengan rendahnya tingkat pelayanan angkutan umum.

Sistem angkutan umum di DKI Jakarta dilayani oleh moda bis yang terdiri: Bis Besar, Bis Sedang dan Bis Kecil. Perusahaan dengan jumlah trayek Bis Besar terbanyak adalah PPD (BUMN), sedangkan perusahaan swasta adalah Mayasari Bhakti. PPD menyediakan jenis pelayanan bis mencakup Reguler sebanyak 54 trayek, Patas 31 trayek, Patas AC 20 trayek, Bis Sekolah 2 trayek dan Bis Tempel trayek, sedangkan Mayasari Bhakti mencakup Regular 17 trayek, Patas 48 trayek, dan Patas AC 38 trayek. (DLLAJ DKI, 2001)

Fenomena trayek yang ada di lapangan menunjukkan bahwa nilai *overlapping* trayek masih tinggi, dengan satu ruas jalan dilewati lebih dari dua trayek, bahkan diantaranya ada yang satu perusahaan. Tabel 2 menunjukkan contoh trayek yang melewati salah satu ruas jalan Jl. Utan Kayu, Jakarta (ID Ruas 130010010) sebanyak 8 trayek.

Tabel 2. Daftar trayek yang melalui Jl. Utan Kayu

No.	Nama perusahaan	Nomor trayek
1	Bianglala Metropolitan	943
2	Jasa Utama	973
3	Mikrolet	M35
4	Metromini	T46
5	Metromini	T49
6	PPD	210
7	PPD	30
8	PPD	38

(Sumber: Hidayati, 2003)

Masalah *overlapping* tersebut sebenarnya bersumber dari belum dilakukannya perencanaan trayek secara optimal, sehingga belum tercipta keterpaduan antar trayek. Studi ini mencoba untuk mengkaji kembali rute angkutan umum di DKI Jakarta, khususnya untuk bis besar.

Kajian ini bertujuan untuk mengetahui kinerja trayek angkutan umum di DKI Jakarta pada kondisi eksisting, merencanakan kembali trayek tersebut dengan mempertimbangkan *overlapping* trayek, rasio volume kapasitas dan struktur ruas jalan serta membandingkan hasil kedua kondisi tersebut.

Batasan kajian ini adalah: 1) Hanya meninjau trayek bus besar PPD Reguler di DKI Jakarta nomor 10, 38, 40, 58 dan 213, 2) Perubahan hanya pada ruas-ruas tertentu bukan seluruh ruas dalam satu trayek, 3) Kinerja yang dibandingkan yaitu: *overlapping* trayek, rasio volume kapasitas (VCR) dan struktur ruas jalan yang dilewati, dengan menggunakan pembobotan terhadap nilai kinerja tersebut, yang diperoleh dari analisis multi kriteria untuk memilih hasil terbaik.

Kinerja trayek angkutan umum perkotaan

Kinerja trayek angkutan umum dapat dilihat dari beberapa sudut pandang yang berbeda berkaitan dengan tingkat kepentingan akibat adanya angkutan umum, yaitu sudut pandang operator, penumpang (user) dan traffic (non user). (Hidayati, 2003)

Kinerja-kinerja trayek angkutan umum yang diperhitungkan antara lain adalah: okupansi/load factor, jam operasi, biaya operasi kendaraan, headway, frekuensi, daerah pelayanan, struktur rute, route directness, panjang rute, titik transfer, overlapping trayek, rasio volume kapasitas, kecepatan dan lain-lain. (Gianopoulus, 1989)

Perencanaan sistem operasional lintasan rute

Perencana suatu rute akan dihadapkan pada dua kepentingan utama, yaitu pengguna jasa (penumpang) dan pengelola. Penumpang berharap rute dapat memberikan kemudahan, kenyamanan, dan cepat sampai ke tujuan, sedangkan pengelola berharap rute dapat memperbesar tingkat pendapatan dan memperkecil biaya operasinya. Agar keinginan tersebut dapat dipenuhi secara optimal, maka perlu ada kerja sama yang baik antara pihak-pihak yang terlibat. (LPM ITB, 1997)

Beberapa kriteria perencanaan rute adalah:

- a. Rute hendaknya mampu membangkitkan kebutuhan pergerakan penumpang (travel demand) dengan jumlah minimal tertentu.
- b. Rute hendaknya mempunyai *route directness* yang rendah.
- c. Rute merupakan rute yang unik, tidak overlapping dengan rute yang lain.
- d. Rute hendaknya dapat memberikan kenyamanan pada para penumpang.
- e. Rute hendaknya memungkinkan dicapai dengan waktu yang memadai.
- f. Rute hendaknya mudah dicapai oleh sebanyakbanyaknya masyarakat.
- g. Rute hendaknya menunjang biaya operasi yang harus dikeluarkan oleh pihak pengelola masih pada batas kewajaran.

Analisis multi kriteria

Analisis multi kriteria adalah suatu metode yang digunakan dalam pengambilan keputusan dan dimaksudkan untuk mengakomodasi aspek-aspek di luar kriteria ekonomi dan finansial. Analisis multi kriteria mengikutsertakan berbagai pihak yang mungkin terlibat di dalam suatu kajian, yaitu *user, non user* dan operator. Adanya analisis multi kriteria ini diharapkan dapat mengurangi konflik kepentingan antar pihak yang terlibat dan dapat menghasilkan keputusan yang optimal.

Kelebihan analisis multi kriteria adalah sudut pandang dalam melakukan proses pemilihan dan penilaian bisa lebih dalam, mengakomodasi berbagai kepentingan yang berbeda, dan lebih transparan. Kekurangannya adalah proses evaluasi menjadi lebih kompleks serta memerlukan data yang lebih banyak. Selain itu karena banyak pihak yang terlibat di dalamnya maka obyektivitas masing-masing pihak juga akan mempengaruhi.

Weighting methode (metoda pembobotan)

Metoda pembobotan adalah salah satu metode dalam analisis multi kriteria yang sangat potensial untuk menjadi metoda pendekatan yang sederhana dalam membuat keputusan. Metoda ini biasanya mengikutsertakan pembobotan kriteria sebagai salah satu elemennya.

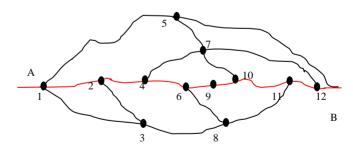
Penggunaan metoda pembobotan linier dalam menentukan alternatif pilihan didasarkan pada bobot jumlah skor (nilai) dari pengaruh-pengaruh yang berbeda. Umumnya metoda pembobotan linier mengasumsikan bahwa semua pengaruh diukur pada skala kardinal (interval atau rasio), sehingga untuk memilih alternatif terbaik, penilaian semua skema berdasar kardinal juga dapat dicapai.

Kajian ini akan menggunakan hasil kuisioner tentang persepsi orang terhadap macam/interval kinerja untuk mencari bobot tiap macam/interval kinerja per *stakeholder* dan nilai tiap *stakeholder* per macam/interval kinerja. Bobot (*weight*) menyatakan tingkat kepentingan suatu kinerja jika dibandingkan dengan kinerja yang lain tiap *stakeholder*. Masingmasing *stakeholder* akan memberikan nilai atau *score* tersendiri pada kinerja tersebut.

METODE PENELITIAN Data

Data yang digunakan dalam kajian *rerouting* trayek adalah data sekunder, diasumsikan diperoleh pada tahun yang sama, yang terdiri dari:

- a. Trayek PPD Reguler diperoleh dari Trayek Angkutan Umum DKI Jakarta.
- b. Data karakteristik ruas diperoleh dari Laporan Survai Volume Lalu Lintas, DLLAJ DKI Jakarta, dan Data Base URMS DKI Jakarta.
- c. Data *headway* diperoleh dari studi terdahulu yang dilakukan LPM-ITB.


Proses pembuatan alternatif

- **a.** Peninjauannya adalah per ruas atau beberapa ruas jalan bukan seluruh ruas jalan dalam satu trayek, yang memerlukan data pada kondisi eksisting (kondisi di lapangan).
- **b.** Data yang diperlukan yaitu data kinerja angkutan umum dan ruas jalan, yang terdiri dari: struktur

rute, jumlah trayek dan rasio volume lalu lintas terhadap kapasitas ruas jalan.

Dicari weight, score dan hasil kali antara weight dengan score (W). Weight menyatakan tingkat

- c. kepentingan suatu kinerja dibandingkan kinerja lainnya, sedangkan *score* adalah angka yang diberikan oleh tiap kepentingan pada suatu kinerja. Nilai W digunakan sebagai alat bantu dalam proses *rerouting*. Nilai W yang terkecil menyatakan ruas jalan dengan kondisi terjelek, sedangkan terbesar menyatakan kondisi terbaik.
- **d.** Nilai W tiap ruas jalan kemudian dirangking mulai dari nilai terkecil sampai terbesar untuk tiap trayek
- e. Lakukan pemilihan ruas jalan yang akan diubah. Perubahan dimulai dari ruas dengan nilai W terkecil. Jika tidak mungkin, langkah-langkah yang dapat dilakukan adalah:
 - Perubahan dilakukan berdasarkan jalan dengan nilai W terkecil.
 - Jika tidak mungkin hanya satu ruas/jalan maka perubahan dilakukan pada beberapa ruas yang saling berhubungan dengan ruas yang mempunyai nilai W terkecil.
- f. Buat alternatif untuk merubah ruas jalan yang dipilih sesuai butir (e). Skema pembuatan alternatif (skenario) dapat dilihat pada Gambar 1, dengan contoh kasus untuk trayek dari A ke B, dengan rute dari node 1-2-4-6-9-10-11-12, adalah sebagai berikut:
 - Jika nilai W terkecil pada ruas 1-2
 - saja, maka alternatifnya:
 - A-1: diubah melewati **1-5-7-10-**11-12
 - A-2: diubah melewati **1-3-2**-4-6-9-10-11-12
 - A-3: diubah melewati **1-5-7-4**-6-9-10-11-12

Gambar 1. Skema pemilihan ruas yang akan diubah

Keterangan gambar:

- : Ruas jalan (asumsi jalan arteri/kolektor, dua arah).
 - : Node/simpul
 - Jika nilai W terkecil pada ruas 6-9 saja, maka alternatifnya:

A-1: diubah melewati 1-2-4-6-8-11-12

A-2: diubah melewati 1-2-4-7-10-11-12

A-3: diubah melewati 1-2-4-7-12

Jika nilai W terkecil pada ruas 1-2 dan 2-4, maka alternatifnya:

A-1: diubah melewati **1-5-7-10-**11-12

A-2: diubah melewati **1-3-8-**11-12

A-3: diubah melewati **1-3-8-6**-9-10-11-12

Jika nilai W terkecil pada ruas 1-2 dan 6-9, maka alternatifnya:

A-1: diubah melewati **1-3-2**-4-**6-8-**11-12

A-2: diubah melewati **1-3-2**-4-**7-10-**11-12

A-3: diubah melewati 1-3-8-11-12

A-4: diubah melewati 1-5-7-10-11-12

- **g.** Hitung nilai kinerja yang ditinjau pada kondisi alternatif (skenario) menggunakan data volume lalu lintas, kapasitas ruas jalan, struktur rute, *overlapping* trayek dan *headway*.
- **h.** Lakukan pembobotan kembali pada ruas jalan yang berubah tiap skenario untuk mendapatkan nilai W seperti pada butir (c).
- i. Lakukan analisis hasil perhitungan nilai W baik pada kondisi eksisting maupun skenario untuk menentukan rute terbaik dari skenario yang dibuat.

Tahap penentuan rute terbaik

- a. Hitung W per km, untuk kondisi eksisting dan skenario yang dibuat.
- b. Bandingkan kedua nilai W per km di atas, nilai yang lebih besar antara kondisi eksisting dan skenario menyatakan rute dengan kondisi yang lebih baik sehingga rute tersebut dipilih.
- c. Jika dari semua skenario yang dibuat menghasilkan kondisi yang lebih baik dari eksistingnya, maka untuk mendapatkan kondisi terbaik perbandingan didasarkan pada perbedaan jarak trayek yang diperoleh tiap skenario, nilai yang lebih besar menyatakan panjang trayek kondisi skenario lebih pendek sehingga alternatif tersebut dipilih.

HASIL DAN PEMBAHASAN

Analisis pembobotan terhadap kinerja trayek pada kondisi eksisting menghasilkan nilai W pada kondisi eksisting untuk tiap trayek yang ditinjau.

Nilai W per ruas jalan yang diperoleh kemudian dirangking mulai dari yang terkecil dan digunakan sebagai acuan untuk merubah rute, yaitu perubahan dimulai dari ruas jalan dengan nilai W terkecil yang prosesnya seperti yang telah dijelaskan sebelumnya.

Hasil pembobotan Trayek PPD 10 dapat dilihat pada Lampiran 1, sedangkan perangkingan nilai W dapat dilihat pada Tabel 3.

Tabel 3. Hasil perangkingan nilai W untuk trayek PPD 10 (Blok M – Senen)

PPD 10 (Blok M – Senen)							
No.	Nilai W	BK	Ruas (ID)	Nama jalan			
1	0.004	В	141030013	Hang Lekir			
2	0.005	В	141030010	Hang Lekir			
3	0.005	K	141040020	Sisingamangaraja			
4	0.005	В	004030050	MH.Thamrin			
5	0.005	K	004030050	MH.Thamrin			
6	0.006	В	141030015	Hang Lekir			
7	0.006	В	004030040	MH.Thamrin			
8	0.006	K	004030040	MH.Thamrin			
9	0.006	В	193010005	Kyai Maja			
10	0.006	В	004030010	MH.Thamrin			
11	0.006	K	004030010	MH.Thamrin			
12	0.006	K	002080010	Banteng Barat			
13	0.006	K	141040030	Sisingamangaraja			
14	0.006	В	034010015	Jend. Sudirman			
15	0.006	K	034010015	Jend. Sudirman			
16	0.007	K	012020030	Senen/Ged Kesenian			
17	0.007	В	034010018	Jend. Sudirman			
18	0.007	K	034010018	Jend. Sudirman			
19	0.007	В	004030060	MH.Thamrin			
20	0.007	K	004030060	MH.Thamrin			
21	0.007	В	004030020	MH.Thamrin			
22	0.007	K	004030020	MH.Thamrin			
23	0.007	В	193030030	Paku Buwono VI			
24	0.007	В	001120010	Majapahit			
25	0.007	В	001060040	Ir.H.Juanda			
26	0.007	K	001060040	Ir.H.Juanda			
27	0.007	В	001060030	Ir.H.Juanda			
28	0.007	K	001060030	Ir.H.Juanda			
29	0.007	K	002040010	Lap Banteng Utara			
30	0.008	В	034010035	Jend. Sudirman			
31	0.008	K	001010010	Medan Merdeka Utara			
32	0.008	K	034010035	Jend. Sudirman			
33	0.008	В	034010020	Jend. Sudirman			
34	0.008	В	193030040	Paku Buwono VI			
35	0.008	K	034010020	Jend. Sudirman			
36	0.008	В	001010010	Medan Merdeka Utara			
37	0.008	В	141030020	Hang Lekir			
38	0.008	K	001120010	Majapahit			
39	0.008	В	034010025	Jend. Sudirman			
40	0.008	K	034010025	Jend. Sudirman			
41	0.008	В	034010030	Jend. Sudirman			
42	0.008	В	192040010	Trunojoyo			
43	0.008	K	034010030	Jend. Sudirman			
44	0.008	K	193020005	Panglima Polim			
45	0.008	В	193010040	Kyai Maja			
46	0.008	В	012030020	Pasar Senen			
47	0.008	K	012030020	Pasar Senen			
48	0.009	В	193010020	Kyai Maja			
49	0.009	В	193010030	Kyai Maja			
50	0.009	В	078010100	Gunung Sahari			
51	0.009	K	078010100	Gunung Sahari			
52	0.009	K	012040020	Kramat Bunder			
53	0.009	В	078010110	Gunung Sahari			
54	0.009	K	078010110	Gunung Sahari			
55	0.009	В	012030015	Pasar Senen			
56	0.009	K	012030015	Pasar Senen			
57	0.010	В	251010010	Hasanudin			
58	0.010	В	193030020	Paku Buwono VI			
59	0.010	K	010075010	Sta. Senen			
60	0.010	В	002060010	Jl. Pos			

Lanjutan Tabel 3

61	0.010	В	004030030	MH.Thamrin
62	0.010	K	004030030	MH.Thamrin
63	0.011	В	001060020	Ir.H.Juanda
64	0.011	В	001020010	Medan Merdeka Barat
65	0.011	K	001020010	Medan Merdeka Barat
66	0.011	В	001020020	Medan Merdeka Barat
67	0.011	K	001020020	Medan Merdeka Barat
68	0.011	K	002030010	DR. Sutomo
69	0.011	В	002030010	DR. Sutomo
70	0.011	K	001070010	Veteran
71	0.011	K	001070020	Veteran
72	0.012	K	012030010	Pasar Senen
73	0.012	В	034010050	Jend. Sudirman
74	0.012	K	034010050	Jend. Sudirman
75	0.012	В	034010040	Jend. Sudirman
76	0.012	K	034010040	Jend. Sudirman
77	0.013	В	001060010	Ir.H.Juanda
78	0.015	В	193010010	Kyai Maja
79	0.016	В	034010010	Jend. Sudirman

Perangkingan dilakukan dalam rangka untuk mengetahui urutan kondisi ruas jalan, yang dimulai dari kondisi terjelek pada trayek bersangkutan dan dinyatakan dengan jumlah hasil kali weight dengan score (W) terendah. Hasil perangkingan tersebut digunakan untuk acuan dalam melakukan pembuatan skenario perubahan ruas jalan, mana ruas yang akan dan mungkin untuk diubah rutenya. Setelah urutan kondisi ruas jalan tiap trayek diperoleh, langkah selanjutnya yaitu membuat alternatif-alternatif yang mungkin untuk tiap trayek yang ditinjau, yang prosesnya telah dijelaskan sebelumnya.

Perubahan trayek dapat dilakukan secara bersamaan antara rute berangkat (B) dan rute kembali (K) seperti terlihat di Tabel 3. Ruas jalan yang mengalami perubahan tersebut kemudian juga dicari nilai W-nya seperti pada kondisi eksistingnya. Perubahan tersebut akan menghasilkan perubahan nilai-nilai kinerja angkutan umum pada ruas jalan yang dilewati tiap trayek. Perubahan selain terjadi pada nilai kinerja, yaitu terjadi pada pembobotan masing-masing kinerja dan jumlah hasil kali weight dengan score (W) tiap ruas jalan yang berubah.

Perubahan yang terjadi pada ruas jalan yang dibuat alternatif, ditampilkan dalam hasil up-dating jumlah hasil kali weight dengan score (W), yang contohnya dapat dilihat pada Tabel 4 dan sampai Tabel 13. Tabel tersebut digunakan untuk melihat perbandingan antara kondisi eksisting dengan skenario tiap trayek yang dinyatakan dalam perbedaan jumlah hasil kali weight dengan score per kilometer pada ruas jalan yang berubah.

Tabel 4. Perbandingan nilai W kondisi eksisting dan skenario1 PPD 10

	Nila	i W	Nila	i W
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru
Ke-			Sesudah	Sebelum
Ke-			skenario	skenario
1	0.0082	0.0126	0.0100	0.0125
2	0.0061	0.0149	0.0061	0.0148
3	0.0148	0.0048	0.0149	0.0048
4	0.0085	0.0056	0.0085	0.0055
5	0.0086	0.0120	0.0086	0.0119
6	0.0083	0.0098	0.0083	0.0097
7	0.0078	0.0101	0.0093	0.0101
8	0.0070		0.0077	
9	0.0098		0.0123	
10	0.0080		0.0103	
11	0.0055		0.0065	
12	0.0038		0.0038	
13	0.0048		0.0054	
14	0.0053		0.0066	
15	0.0064		0.0085	
Jumlah =	0.1130	0.0699	0.1269	0.0693
Panjang ruas jalan yang berubah =	5.2969	3.0353	5.2969	3.0353
Nilai W per Km =	0.0213	0.0230	0.0239	0.0228

Tabel 5. Perbandingan nilai W kondisi eksisting dan skenario2 PPD 10

	Nila	i W	Nilai W	
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru
Ke-			Sesudah	Sebelum
Ke-			skenario	skenario
1	0.0082	0.0064	0.0100	0.0064
2	0.0061	0.0053	0.0061	0.0053
3	0.0148		0.0149	
4	0.0085		0.0085	
5	0.0086		0.0086	
6	0.0083		0.0083	
7	0.0078		0.0093	
8	0.0070		0.0077	
9	0.0098		0.0123	
10	0.0080		0.0103	
11	0.0055		0.0065	
12	0.0038		0.0038	
13	0.0048		0.0054	
Jumlah =	0.1013	0.0117	0.1118	0.0117
Panjang Ruas Jalan yang Berubah =	4.0852	1.2116	4.0852	1.2116
Nilai W per Km =	0.0248	0.0097	0.0274	0.0097

Tabel 4 menjelaskan bahwa pada skenario1 terdapat segmen ruas jalan yang diubah, yaitu 15 menjadi 7 segmen, atau terjadi perubahan panjang jalan sebesar 5,2969 km menjadi 3,0353 km. Tabel 5 menjelaskan bahwa pada skenario2 terjadi perubahan panjang jalan sebesar 4,0852 km menjadi 1,2116 km.

Berdasarkan kedua tabel tersebut dapat diketahui perubahan nilai W per km ruas jalan yang

berubah untuk trayek PPD 10 dari 0,0213 pada kondisi eksisting1 menjadi 0,0230 pada skenario1, sedangkan untuk kondisi eksisting2 dari 0,0248 menjadi 0,0097 pada skenario2. Hal ini menunjukkan kondisi skenario1 yang dibuat untuk PPD 10 lebih baik dari eksisting1, sedangkan skenario2 lebih jelek dari eksisting2. Skenario1 dapat dipilih sebagai rute alternatif sedangkan skenario2 tidak disarankan untuk dipilih sebagai rute alternatif.

Tabel 6. Perbandingan nilai W kondisi eksisting dan skenario1 PPD 38

	Nila	ni W	Nilai W	
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru
Ke-			Sesudah	Sebelum
KC-			skenario	skenario
1	0.0082	0.0126	0.0100	0.0125
2	0.0061	0.0149	0.0061	0.0148
3	0.0148	0.0048	0.0149	0.0048
4	0.0085	0.0056	0.0085	0.0055
5	0.0086	0.0120	0.0086	0.0119
6	0.0083	0.0098	0.0083	0.0097
7	0.0078	0.0101	0.0093	0.0101
8	0.0070		0.0077	
9	0.0098		0.0123	
10	0.0080		0.0103	
11	0.0055		0.0065	
12	0.0038		0.0038	
13	0.0048		0.0054	
14	0.0053		0.0066	
15	0.0064		0.0085	
Jumlah =	0.1130	0.0699	0.1269	0.0693
Panjang Ruas Jalan	5.2969	3.0353	5.2969	3.0353
yang Berubah =	3.2707	3.0333	3.2707	3.0333
Nilai W per Km =	0.0213	0.0230	0.0239	0.0228

Tabel 7. Perbandingan nilai W kondisi eksisting dan skenario2 PPD 38

	Nila	ni W	Nilai W	
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru
Ke-			Sesudah	Sebelum
KC-			skenario	skenario
1	0.0228	0.0208	0.0228	0.0210
2	0.0128	0.0178	0.0128	0.0180
3	0.0074	0.0086	0.0074	0.0086
4	0.0085	0.0125	0.0085	0.0126
5	0.0104	0.0106	0.0104	0.0106
6	0.0111	0.0046	0.0111	0.0046
7	0.0064	0.0106	0.0064	0.0106
8	0.0101	0.0125	0.0101	0.0126
9	0.0085	0.0086	0.0085	0.0086
10	0.0040	0.0178	0.0040	0.0180
11	0.0117	0.0210	0.0117	0.0208
12	0.0074		0.0074	
13	0.0128		0.0128	
14	0.0228		0.0228	
Jumlah =	0.1564	0.1456	0.1564	0.1461
Panjang Ruas Jalan yang Berubah =	7.6553	7.2585	7.6553	7.2585
Nilai W per Km =	0.0204	0.0201	0.0204	0.0201

Seperti halnya pada alternatif yang dibuat untuk trayek PPD 10, pada skenario1 PPD 38 terjadi perubahan panjang ruas jalan dari 5,2969 km menjadi 3,0353 km, sedangkan pada skenario2 PPD 38 berubah dari 7,6553 km menjadi 7,2585 km. Kondisi tersebut dapat dilihat pada Tabel 6 dan 7.

Kedua tabel ini menjelaskan perubahan nilai W per km untuk trayek PPD 38 dari 0,0213 pada kondisi eksisting1 menjadi 0,0230 pada skenario1, sedangkan untuk kondisi eksisting2 dari 0,0204 menjadi 0,0201 pada skenario2. Hal ini menunjukkan kondisi skenario1 yang dibuat untuk PPD 38 lebih baik dari eksisting1, sedangkan skenario2 lebih jelek dari eksisting2. Skenario1 dipilih sebagai rute alternatif sedangkan skenario2 tidak disarankan untuk dipilih sebagai rute alternatif.

Tabel 8. Perbandingan nilai W kondisi eksisting dan skenario1 PPD 40

	Nila	i W	Nilai W	
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru
V _o			Sesudah	Sebelum
Ke-			skenario	skenario
1	0.0108	0.0085	0.0114	0.0089
2	0.0121	0.0053	0.0129	0.0056
3	0.0068	0.0076	0.0074	0.0080
4	0.0075	0.0085	0.0087	0.0090
5	0.0078	0.0080	0.0078	0.0084
6	0.0093	0.0072	0.0093	0.0076
7	0.0097	0.0076	0.0097	0.0080
8	0.0075	0.0084	0.0075	0.0084
9	0.0053	0.0094	0.0053	0.0093
10	0.0043	0.0102	0.0047	0.0109
11	0.0073		0.0096	
12	0.0093		0.0093	
13	0.0078		0.0078	
14	0.0083		0.0086	
15	0.0091		0.0116	
16	0.0082		0.0100	
Jumlah =	0.1310	0.0806	0.1417	0.0842
Panjang Ruas Jalan				
yang Berubah =	5.4140	3.6616	5.4140	3.6616
Nilai W per Km =	0.0242	0.0220	0.0262	0.0230

Seperti halnya pada alternatif yang dibuat untuk trayek PPD 10, pada skenario1 PPD 40 terjadi perubahan panjang ruas jalan dari 5,4140 km menjadi 3,6616 km, sedangkan pada skenario2 PPD 40 berubah dari 7,9548 km menjadi 5,29 km. Kondisi tersebut dapat dilihat pada Tabel 8 dan 9.

Berdasarkan Tabel 8 dan 9 dapat diketahui perubahan nilai W per km ruas jalan yang berubah untuk trayek PPD 40 dari 0,0242 pada kondisi eksisting1 menjadi 0,0220 pada skenario, sedangkan untuk kondisi eksisting2 dari 0,0237 menjadi 0,0235 pada skenario2. Hal ini berarti bahwa kondisi skenario1 dan skenario2 yang dibuat untuk PPD 40

lebih jelek dari eksistingnya. Skenario1 maupun skenario2 untuk PPD 40 disarankan untuk tidak dipilih karena mempunyai kinerja yang lebih jelek dari sebelumnya.

Tabel 9. Perbandingan nilai W kondisi eksisting dan skenario2 PPD 40

3.0	Nila		Nilai W	
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru
V.			Sesudah	Sebelum
Ke-			skenario	skenario
1	0.0108	0.0110	0.0114	0.0100
2	0.0121	0.0094	0.0129	0.0086
3	0.0068	0.0084	0.0074	0.0086
4	0.0075	0.0093	0.0087	0.0086
5	0.0078	0.0088	0.0078	0.0086
6	0.0093	0.0110	0.0093	0.0109
7	0.0097	0.0087	0.0097	0.0104
8	0.0075	0.0110	0.0075	0.0109
9	0.0053	0.0088	0.0053	0.0086
10	0.0064	0.0093	0.0064	0.0086
11	0.0102	0.0084	0.0107	0.0086
12	0.0104	0.0094	0.0112	0.0086
13	0.0073	0.0110	0.0073	0.0100
14	0.0113		0.0113	
15	0.0075		0.0075	
16	0.0047		0.0053	
17	0.0043		0.0047	
18	0.0073		0.0096	
19	0.0093		0.0093	
20	0.0078		0.0078	
21	0.0083		0.0086	
22	0.0091		0.0116	
23	0.0082		0.0100	
Jumlah =	0.1887	0.1245	0.2013	0.1215
Panjang Ruas Jalan yang Berubah =	7.9548	5.2900	7.9548	5.2900
Nilai W per Km =	0.0237	0.0235	0.0253	0.0230

Berdasarkan Tabel 10 dan 11 dapat diketahui bahwa PPD 58 mempunyai nilai W per km yang diperoleh pada kedua skenarionya lebih besar dari kondisi eksistingnya, sehingga kedua skenario dapat dipakai sebagai alternatif pilihan. Nilai skenario1 yaitu 0,0235 sedangkan eksisting1 0,0187 dan untuk skenario2 yaitu 0,0253 sedangkan eksisting2 0,0246. Kedua skenario Trayek PPD 58 tersebut dicari lagi mana yang lebih baik dipilih sebagai alternatif terbaik. Pemilihan didasarkan pada perbedaan panjang trayek antara kedua skenario tersebut

Tabel 11. Perbandingan nilai W kondisi eksisting dan skenario2 PPD 58

SKCIIai	SKEHAHOZ FFD 36							
	Nila	Nilai W		ai W				
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru				
Ke-			Sesudah	Sebelum				
Ke-			skenario	skenario				
1	0.0127	0.0199	0.0127	0.0201				
2	0.0071	0.0069	0.0071	0.0069				
3	0.0071	0.0099	0.0071	0.0099				
4	0.0141	0.0135	0.0141	0.0134				
5	0.0067	0.0135	0.0067	0.0134				
6	0.0207	0.0075	0.0207	0.0075				
7	0.0207	0.0083	0.0207	0.0083				
8	0.0067	0.0069	0.0067	0.0069				
9	0.0141	0.0199	0.0141	0.0201				
10	0.0071		0.0071					
11	0.0071		0.0071					
12	0.0127		0.0127					
Jumlah =	0.1370	0.1063	0.1370	0.1064				
Panjang Ruas Jalan	5.5680	4.1980	5.5680	4.1980				
yang Berubah =	5.5000	4.1900	3.3000	4.1700				
Nilai W per Km =	0.0246	0.0253	0.0246	0.0253				

Tabel 10. Perbandingan nilai W kondisi eksisting dan skenario1 PPD 58

uali sk	dan skenarioi PPD 38							
	Nila	u W	Nilai W					
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru				
Ke-			Sesudah	Sebelum				
Ke-			skenario	skenario				
1	0.0067	0.0175	0.0067	0.0175				
2	0.0207	0.0066	0.0207	0.0066				
3	0.0181	0.0175	0.0181	0.0175				
4	0.0086		0.0086					
5	0.0113		0.0113					
6	0.0143		0.0157					
7	0.0065		0.0065					
8	0.0086		0.0086					
9	0.0181		0.0181					
10	0.0207		0.0207					
11	0.0067		0.0067					
Jumlah =	0.1404	0.0416	0.1417	0.0416				
Panjang Ruas Jalan yang Berubah =	7.5000	1.7730	7.5000	1.7730				
Nilai W per Km =	0.0187	0.0235	0.0189	0.0235				

Tabel 12. Perbandingan nilai W kondisi eksisting dan skenario1 PPD 213

	Nila	i W	Nilai W				
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru			
Ke-			Sesudah skenario	Sebelum skenario			
1	0.0066	0.0109	0.0066	0.0114			
2	0.0054	0.0072	0.0054	0.0074			
3	0.0061	0.0103	0.0061	0.0102			
4	0.0086	0.0099	0.0086	0.0098			
5	0.0117	0.0109	0.0117	0.0114			
6	0.0117	0.0072	0.0117	0.0074			
7	0.0086	0.0103	0.0086	0.0102			
8	0.0061	0.0099	0.0061	0.0098			
9	0.0054		0.0054				
10	0.0066		0.0066				
Jumlah =	0.0769	0.0766	0.0769	0.0776			
Panjang Ruas Jalan yang Berubah =	3.3856	2.2160	3.3856	2.2160			
Nilai W per Km =	0.0227	0.0346	0.0227	0.0350			

Berdasarkan Tabel 10 dapat diketahui juga panjang ruas jalan yang berubah adalah 1,773 km dari kondisi eksisting1 sebesar 7,5 km sehingga diperoleh perbedaan panjang skenario1 sebesar 5,7270 km, sedangkan untuk skenario2 pada Tabel 11 menghasilkan panjang ruas jalan yang berubah adalah 4,198 km dari kondisi eksistingnya sebesar 5,568 km sehingga diperoleh perbedaan panjang skenario2 sebesar 1,37 km. Melihat hasil perbedaan panjang yang diperoleh tersebut maka kondisi skenario1 lebih dianjurkan untuk dipilih dengan mendasarkan pada panjang trayek yang lebih pendek.

Tabel 13. Perbandingan nilai W kondisi eksisting dan skenario2 PPD 213

	Nila		Nilai W					
Ruas jalan	Eksisting	Skenario	Ruas lama	Ruas baru				
Ke-			Sesudah	Sebelum				
Ke-			skenario	skenario				
1	0.0066	0.0103	0.0066	0.0114				
2	0.0054	0.0071	0.0054	0.0074				
3	0.0061	0.0126	0.0061	0.0125				
4	0.0086	0.0109	0.0086	0.0109				
5	0.0117	0.0078	0.0117	0.0078				
6	0.0103	0.0095	0.0103	0.0095				
7	0.0075	0.0077	0.0075	0.0077				
8	0.0112	0.0067	0.0112	0.0067				
9	0.0127	0.0067	0.0127	0.0067				
10	0.0068	0.0117	0.0068	0.0117				
11	0.0141	0.0115	0.0141	0.0114				
12	0.0101	0.0117	0.0110	0.0117				
13	0.0104	0.0067	0.0104	0.0067				
14	0.0068	0.0067	0.0068	0.0067				
15	0.0127	0.0077	0.0127	0.0077				
16	0.0112	0.0095	0.0112	0.0095				
17	0.0075	0.0078	0.0075	0.0078				
18	0.0103	0.0109	0.0103	0.0109				
19	0.0117	0.0126	0.0117	0.0125				
20	0.0086	0.0071	0.0086	0.0074				
21	0.0061	0.0103	0.0061	0.0114				
22	0.0054		0.0054					
23	0.0066		0.0066					
Jumlah =	0.2082	0.1936	0.2091	0.1959				
Panjang Ruas Jalan yang Berubah =	9.1162	7.6000	9.1162	7.6000				
Nilai W per Km =	0.0228	0.0255	0.0229	0.0258				

Berdasarkan Tabel 12 dan 13 dapat diketahui trayek PPD 213 untuk kedua skenario menghasilkan nilai W per km lebih besar dari eksistingnya, sehingga keduanya mungkin untuk dipilih seperti pada trayek PPD 58. Nilai skenario1 yaitu 0,0346 sedangkan eksisting1 0,0227 dan untuk skenario2 yaitu 0,0255 sedangkan eksisting2 0,0228. Kedua skenario tersebut harus dipilih salah satunya sebagai scenario yang terbaik, yaitu dengan membandingkan perbedaan panjang trayek antara kondisi eksisting

dengan skenario. Berdasarkan hasil perbandingan tersebut diketahui bahwa skenario2 menghasilkan perbedaan panjang yang lebih besar dari skenario1, yaitu sebesar 1,5162 km untuk skenario2 dan sebesar 1,1696 km untuk skenario1. Kondisi skenario2 pada trayek PPD 213 merupakan kondisi yang lebih baik untuk dipilih karena mempunyai panjang trayek yang lebih pendek.

KESIMPULAN DAN SARAN

Kesimpulan

Hasil nilai W per km dan/atau perbedaan jarak kondisi eksisting dengan skenario, yaitu:

- a. PPD 10, eksisting1 0,0213 per km, skenario1 menjadi 0,0230 per km, eksisting2 0,0248 per km sedangkan skenario2 menjadi 0,0097 per km.
- b. PPD 38, eksisting1 0,0213 per km, skenario1 menjadi 0,0230 per km, eksisting2 0,0204 per km sedangkan skenario2 menjadi 0,0201 per km.
- c. PPD 40, eksisting1 0,0242 per km, skenario1 menjadi 0,0220 per km, eksisting2 0,0237 per km sedangkan skenario2 menjadi 0,0235 per km.
- d. PPD 58, eksisting1 0,0187 per km, skenario1 menjadi 0,0235 per km, eksisting2 0,0246 per km sedangkan skenario2 menjadi 0,0253 per km, dengan perbedaan jarak pada skenario1 sebesar 5,727 km dan skenario2 sebesar 1,3700 km.
- e. PPD 213, eksisting1 0,0227 per km, skenario1 menjadi 0,0346 per km, eksisting2 0,0228 per km sedangkan skenario2 menjadi 0,0255 per km, dengan perbedaan jarak pada skenario1 sebesar 1,1696 km dan skenario2 sebesar 1,5162 km.
- f. Berdasarkan nilai W per km tiap trayek, dan/atau perbedaan jarak kondisi eksisting dengan skenario, maka alternatif yang dipilih untuk PPD 10 adalah skenario1, untuk PPD 38 skenario1, untuk PPD 40 eksisting, untuk PPD 58 skenario1 dan untuk PPD 213 skenario2.

Saran

Selain faktor teknis yang perlu diperhatikan dalam permasalahan angkutan umum adalah faktor non teknis, seperti penyelenggaraan hukum (undangundang) dan faktor kedisiplinan (baik penumpang, operator maupun petugas di lapangan).

Perlu adanya pengembangan lebih lanjut terhadap studi ini dalam proses pembuatan dan pemilihan rute alternatif berdasarkan *network based* yang nantinya dapat dimodelkan ke dalam suatu program komputer.

DAFTAR PUSTAKA

- Adiwianto, T, 2000, Identifikasi Permasalahan Angkutan Umum Bus: Kasus Angkutan Bus Besar DKI Jakarta, KNTJ 6.
- Giannopoulos, GA, 1989, Bus Planning and Operation in Urban Area: A Practical Guide, Athenaeum Press Ltd, Great Britain.
- Hidayati, N, 2003, Kajian Rerouting Trayek Angkutan Umum di DKi Jakarta, *Tesis*, Institut Teknologi Bandung, Bandung.
- LPM-ITB, 1997, Modul Pelatihan: Perencanaan Sistem Angkutan Umum, Lembaga Pengabdian Masyarakat Institut Teknologi Bandung, Bandung.
- Perum PPD, 1999, Laporan Realisasi Rencana Kerja dan Anggaran Triwulan IV dan Tahun 1998, Perusahaan Umum PPD, Jakarta.

Lampiran 1. Hasil pembobotan trayek PPD Reguler 10 berangkat pada kondisi eksisting (Blok M - Senen)

Lan	рпа	II I. Hasii	pemboi	ootan i	nayek FFD r	keguler 10 bera	mgkai	pada Ko	maisi ei	Ksisung	(DIOK IV	1 - 261	ieii)								
No	BK	BK Ruas_(ID) Node_ Node_ Nama_Jalan Jenis_Ruas		Jenis_Ruas	(x _{S2} . x _{S4} . w _{S1} . w _{S3}) Jara			Jarak	(x _{O2} , x _{O4} , Overlap_ (w _{O1} , w _{O3})			Kapasitas	Kapasitas Volume		(x _{V2} . x _{V4} . w _{V1} . w _{V3})			w			
		_, ,	Awal	Akhir	_	_	User	Non-user	Operator	IDr (KM)	Trayek	User	Non-user	Operator				User	Non-user	Operator	1
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)
1	В	BM20	BM	251020	Keluar Terminal	, ,		` '		` ′				` '	. /				Ì	` '	
2	В	251010010	251020	192010	Hasanudin	Arteri Sekunder	0.0022	0.0028	0.0012	0.387	50	0.0003	0.0008	0.0015	4031	2257	0.56	0.0006	0.0033	0.0023	0.0095
3	В	192040010	192010	193020	Trunojoyo	Arteri Sekunder	0.0022	0.0028	0.0012	0.441	50	0.0003	0.0008	0.0015	4031	3829	0.95	0.0003	0.0011	0.0007	0.0082
4	В	193010005	193020	193023	Kyai Maja	Arteri Sekunder	0.0022	0.0028	0.0012	0.000	36	0.0004	0.0012	0.0023	3594	1869	0.52	0.0009	0.0033	0.0018	0.0061
5	В	193010010	193023	252010	Kyai Maja	Arteri Sekunder	0.0022	0.0028	0.0012	0.866	36	0.0004	0.0012	0.0023	3594	1869	0.52	0.0009	0.0033	0.0018	0.0148
6	В	193010020	252010	252020	Kyai Maja	Arteri Sekunder	0.0022	0.0028	0.0012	0.238	32	0.0004	0.0012	0.0023	3594	1869	0.52	0.0009	0.0033	0.0018	0.0085
7	В	193010030	252020	253040	Kyai Maja	Arteri Sekunder	0.0022	0.0028	0.0012	0.244	32	0.0004	0.0012	0.0023	3594	1869	0.52	0.0009	0.0033	0.0018	0.0086
8	В	193010040	253040	194040	Kyai Maja	Arteri Sekunder	0.0022	0.0028	0.0012	0.219	32	0.0004	0.0012	0.0023	3594	1869	0.52	0.0009	0.0033	0.0018	0.0083
9	В	193030040	194040	194060	Paku B VI	Arteri Sekunder	0.0022	0.0028	0.0012	0.363	51	0.0003	0.0008	0.0015	2186	2273	1.04	0.0003	0.0011	0.0007	0.0078
10	В	193030030	194060	194070	Paku B VI	Arteri Sekunder	0.0022	0.0028	0.0012	0.176	47	0.0003	0.0008	0.0015	2186	2273	1.04	0.0003	0.0011	0.0007	0.0070
11	В	193030020	194070	193030	Paku B VI	Arteri Sekunder	0.0022	0.0028	0.0012	0.609	32	0.0004	0.0012	0.0023	2186	2273	1.04	0.0003	0.0011	0.0007	0.0098
12	В	141030020	193030	142053	Hang Lekir	Kolektor Sekunder	0.0017	0.0014	0.0007	0.555	23	0.0004	0.0017	0.0033	2186	2273	1.04	0.0003	0.0011	0.0007	0.0080
13	В	141030015	142053	142051	Hang Lekir	Kolektor Sekunder	0.0017	0.0014	0.0007	0.234	23	0.0004	0.0017	0.0033	2186	2273	1.04	0.0003	0.0011	0.0007	0.0055
14	В	141030013	142051	142050	Hang Lekir	Kolektor Sekunder	0.0017	0.0014	0.0007	0.000	23	0.0004	0.0017	0.0033	2186	2273	1.04	0.0003	0.0011	0.0007	0.0038
15	В	141030019	142050	142010	Hang Lekir	Kolektor Sekunder	0.0017	0.0014	0.0007	0.141	23	0.0004	0.0017	0.0033	2186	2273	1.04	0.0003	0.0011	0.0007	0.0048
16	В	034010050	142010	141010	Jend. Sudirman	Arteri Sekunder	0.0022	0.0014	0.0012	0.756	89	0.0004	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0117
17	В	034010030	141010	097005	Jend. Sudirman	Arteri Sekunder	0.0022	0.0028	0.0012	0.814	89	0.0001	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0121
18	В	034010045	097005	097010	Jend. Sudirman	Arteri Sekunder	0.0022	0.0028	0.0012	0.225	89	0.0001	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0078
19	В	034010030	097010	097015	Jend. Sudirman	Arteri Sekunder	0.0022	0.0028	0.0012	0.279	85	0.0001	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0082
20	В	034010035	097015	097020	Jend. Sudirman	Arteri Sekunder	0.0022	0.0028	0.0012	0.269	85	0.0001	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0081
21	В	034010020	097013	096015	Jend. Sudirman	Arteri Sekunder	0.0022	0.0028	0.0012	0.231	85	0.0001	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0031
22	В	034010028	096015	096010	Jend. Sudirman	Arteri Sekunder	0.0022	0.0028	0.0012	0.063	85	0.0001	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0066
23	В	034010015	096010	096005	Jend. Sudirman	Arteri Sekunder	0.0022	0.0028	0.0012	0.044	83	0.0001	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0064
24	В	034010010	096005	034010	Jend. Sudirman	Arteri Sekunder	0.0022	0.0028	0.0012	1.278	83	0.0001	0.0004	0.0008	9080	4348	0.48	0.0009	0.0033	0.0018	0.0156
25	В	004030060	034010	034020	MH.Thamrin	Kolektor Sekunder	0.0017	0.0014	0.0007	0.377	83	0.0001	0.0004	0.0008	9080	3431	0.38	0.0007	0.0029	0.0027	0.0066
26	В	004030050	034010	034020	MH.Thamrin	Kolektor Sekunder	0.0017	0.0014	0.0007	0.218	84	0.0001	0.0004	0.0008	9080	3431	0.38	0.0007	0.0029	0.0027	0.0054
27	В	004030030	034020	015010	MH. Thamrin	Kolektor Sekunder	0.0017	0.0014	0.0007	0.309	84	0.0001	0.0004	0.0008	9080	3431	0.38	0.0007	0.0029	0.0027	0.0061
28	В	004030040	015010	015020	MH.Thamrin	Kolektor Sekunder	0.0017	0.0014	0.0007	0.881	73	0.0001	0.0004	0.0008	9080	3431	0.38	0.0007	0.0029	0.0027	0.0104
29	В	004030030	015020	004040	MH.Thamrin	Kolektor Sekunder	0.0017	0.0014	0.0007	0.415	73	0.0001	0.0004	0.0008	9080	3431	0.38	0.0007	0.0029	0.0027	0.0069
30	В	004030020	004040	004010	MH. Thamrin	Kolektor Sekunder	0.0017	0.0014	0.0007	0.413	52	0.0001	0.0004	0.0008	9080	3431	0.38	0.0007	0.0029	0.0027	0.0063
31	В	001020020	004010	001080	M. Merdeka B	Arteri Sekunder	0.0017	0.0014	0.0007	0.528	52	0.0003	0.0008	0.0015	7264	3153	0.43	0.0007	0.0023	0.0027	0.0107
32	В	001020020	001080	001030	M. Merdeka B	Arteri Sekunder	0.0022	0.0028	0.0012	0.518	52	0.0003	0.0008	0.0015	7264	3153	0.43	0.0009	0.0033	0.0018	0.0107
33	В	001020010	001030	001020	M. Merdeka U	Arteri Sekunder	0.0022	0.0028	0.0012	0.234	71	0.0003	0.0004	0.0013	7264	5117	0.70	0.0005	0.0033	0.0013	0.0079
34	В	001010010	001020	001010	Majapahit	Arteri Sekunder	0.0022	0.0028	0.0012	0.253	72	0.0001	0.0004	0.0008	7264	6514	0.90	0.0003	0.0033	0.0023	0.0070
35	В	001060010	001010	001050	Ir.H.Juanda	Arteri Sekunder	0.0022	0.0028	0.0012	0.643	34	0.0001	0.0004	0.0003	9080	5700	0.63	0.0003	0.0033	0.0007	0.0127
36	В	001060020	001030	002010	Ir.H.Juanda	Arteri Sekunder	0.0022	0.0028	0.0012	0.441	32	0.0004	0.0012	0.0023	9080	3979	0.44	0.0009	0.0033	0.0023	0.0127
37	В	001060020	002010	002010	Ir.H.Juanda	Arteri Sekunder	0.0022	0.0028	0.0012	0.102	30	0.0004	0.0012	0.0023	9080	3979	0.44	0.0009	0.0033	0.0018	0.0073
38	В	001060030	002010	002022	Ir.H.Juanda	Arteri Sekunder	0.0022	0.0028	0.0012	0.102	26	0.0004	0.0017	0.0033	9080	3979	0.44	0.0009	0.0033	0.0018	0.0073
39	В	002060010	002022	002030	Jl. Pos	Arteri Sekunder	0.0022	0.0028	0.0012	0.396	21	0.0004	0.0017	0.0033	5504	4101	0.75	0.0005	0.0033	0.0018	0.0102
40	В	002030010	002030	010020	DR. Sutomo	Arteri Sekunder	0.0022	0.0028	0.0012	0.390	34	0.0004	0.0017	0.0033	5448	3599	0.73	0.0003	0.0023	0.0021	0.0102
41	В	078010100	010020	010020	Gunung Sahari	Arteri Sekunder	0.0022	0.0028	0.0012	0.473	49	0.0004	0.0012	0.0023	5337	2296	0.43	0.0008	0.0033	0.0023	0.0110
42	В	078010100	010020	010010	Gunung Sahari	Arteri Sekunder	0.0022	0.0028	0.0012	0.364	49	0.0003	0.0008	0.0015	5337	2296	0.43	0.0009	0.0033	0.0018	0.0088
43	В	012030020	011010	011010	Pasar Senen	Arteri Sekunder Arteri Sekunder	0.0022	0.0028	0.0012	0.364	49	0.0003	0.0008	0.0015	7117	3332	0.43	0.0009	0.0033	0.0018	0.0093
44	В	012030020	011010	011021	Pasar Senen Pasar Senen	Arteri Sekunder Arteri Sekunder	0.0022	0.0028	0.0012	0.259	49	0.0003	0.0008	0.0015	7117	3332	0.47	0.0009	0.0033	0.0018	0.0084
45	В	SN10	011021	011025 SN		Arten sekunder	0.0022	0.0028	0.0012	0.309	47	0.0003	0.0008	0.0013	/11/	3334	0.47	0.0009	0.0033	0.0018	0.0093
45	Ď	DIVIU	011025	SN	Term. Senen	l .		ı	<u> </u>	L				l	ı				L	l	