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ABSTRACT 

This paper concerns with the down-stream propagation of waves over initially still water. Such study is relevant to generate 
waves of large amplitude in wave tanks of a hydrodynamic laboratory. Input in the form of a time signal is provided at the 
wave-maker located at one side of the wave tank; the resulting wave then propagates over initially still water towards the beach 
at the other side of the tank. Experiments show that nonlinear effects will deform the wave and may lead to large waves with 
wave heights larger than twice the original input; the deformations may show it as peaking and splitting. It is of direct scientific 
interest to understand and quantify the nonlinear distortion; it is also of much practical interest to know at which location in the 
wave tank, the extreme position, the waves will achieve their maximum amplitude and to know the amplitude amplification 
factor. To investigate this, a previously introduced concept called Maximal Temporal Amplitude (MTA) is used: at each 
location the maximum over time of the wave elevation. An explicit expression of the MTA cannot be found in general from the 
governing equations and generating signal. The model is used in this paper is a Korteweg-de Vries (KdV) model and third order 
approximation theory to calculate the approximate extreme positions for a class of wave. This class is the wave-groups that 
originate from initially bi-chromatics type of wave, described by superposition of two monochromatic waves. It is shown that, 
the extreme position depends on the amplitude and the wave length of the group. The theoretical results are verified with 
numerical as well as experimental results for comparison. 
Keywords : Nonlinear distortion, Maximal Temporal Amplitude, extreme position, bi- chromatics waves, KdV equation,  
                     third order approximation. 
 
 

ABSTRAKSI 

Tulisan ini terkonsentrasi pada perambatan gelombang air di laboratorium. Kajian ini dilakukan karena kebutuhan laboratorium 
untuk membangkitkan gelombang beramplitudo tinggi di kolam pengujian. Hasil eksperimen menunjukkan bahwa sebagai 
akibat ketaklinieran medium air menyebabkan bahwa gelombang air mengalami perubahan bentuk yang ditandai dengan 
peristiwa pemuncakan dan pembelahan. Terkait dengan hal ini adalah penting untuk diketahui di posisi mana gelombang 
tersebut mengalami pemuncakan tertinggi (posisi ekstrim) dan berapa pula besarnya kenaikan amplitudo gelombang 
dibandingkan dengan amplitudo gelombang di posisi awal. Untuk menyelidiki hal tersebut diperkenalkan suatu kuantitas yang 
disebut dengan Maximal Temporal Amplitude (MTA). Kuantitas ini digunakan untuk mengukur ketinggian gelombang pada 
suatu posisi untuk setiap waktu. Ekpresi eksplisit kuantitas ini tidak dapat ditemukan apabila pembangkitan gelombang 
dilakukan dengan menggunakan persamaan lengkap. Dalam tulisan ini digunakan persamaan  Korteweg-de Vries (KdV) dan 
pendekatan orde ketiga untuk menghitung posisi ekstrim gelombang yang pada awalnya berupa gelombang bikromatik. 
Gelombang ini merupakan superposisi dua gelombang monokromatik beramplitudo sama tetapi dengan frekuensi yang berbeda. 
Terlihat bahwa posisi ekstrim bergantung pada amplitudo dan panjang gelombang gelombang bikromatik dimaksud. Hasil ini 
serupa dengan hasil eksperimen dan hasil numerik .  
Kata kunci : distorsi, Maximal Temporal Amplitude, posisi ekstrim, gelombang bikromatik,persamaan KdV, aproksimasi  
                      orde ketiga 

 
 
 
INTRODUCTION 

This study is directly motivated to be able to generate 
extreme waves in wave tanks of hydrodynamic laboratories. In 
such a generation, a time signal is given to a wave-maker that 
determines the motion of flaps that push the water. Waves are then 
produced that propagate downstream over initially still water 
along the wave tank. Because of non-linear effects the original 
signal deforms, see (Andonowati, et all, 2004), (Groesen, et all, 
1999), (Stansberg, 1998), (Westhuis, et all, 2000) and (Westhuis, 
et all, 2001). This nonlinear deformation may lead to amplifica-
tion of the waves so that waves can occur with wave heights that 
cannot be generated in a direct way by wave-maker motions.  

The nonlinear effects are difficult to study over the long 
distances and times that are relevant for the laboratory. In parti-

cular it is not clear which waves, i.e. which waves resulting from a 
certain signal, will show amplitude amplification; and if so, at 
which position in the tank the largest waves will appear. This 
position is called the extreme position. The inverse problem, gi-
ven a specified extreme position, find the possible generating wa-
ve maker signals, is of most scientific interest, and of direct rele-
vance for the hydrodynamic laboratories. 

To investigate these problems, it is most fruitful to interpret 
the downstream evolution as a spatial succession of wave signals. 
Directly related to this is a concept called the Maximum Tempo-
ral Amplitude (MTA) that has been introduced in (Andonowati 
and Groesen, 2003). The MTA measures at each location in the 
wave tank the maximum over time of the surface elevation. The 
location where the MTA curve achieves its maximum is the ex-
treme position, there the largest waves will be found. The time 
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signal of the surface elevation at that position will be called the 
extreme signal. Clearly this signal depends on the input at the 
wave maker. The ratio of the maximal value of the MTA com-
pared to its value at the wave-maker defines the amplification 
factor. The MTA can also be used for the inverse problem when a 
wave-field with a clear extreme position is considered. Suppose 
that LD is the distance in the wave tank from the wave-maker 
where the extreme signal is requested to appear. If the extreme 
position of the wave-field is denoted by , the signal to be 
generated at the wave-maker should be the signal of the wave-
field at the location of . 

The aim of this paper is to derive the approximate extreme 
positions for certain wave-fields at the wave-maker. The wave 
fields that arise from bi-chromatics wave maker signal are res-
tricted. Such signal consist of two mono-chromatic components of 
the same amplitudes but slightly different of frequencies. This 
signal develops into highly distorted wave-groups with clear am-
plitude amplification from nonlinear effects. They are prototypes 
of interesting wave groups with extreme waves; see for instance 
the insightful investigations in Longuet (1984), Phillips (1993) 
and Donelan (1990). For this group, many numerical and experi-
mental results are available to verify our theoretical investigation, 
such as (Westhuis, et all, 2000) and (Westhuis, et all, 2001). 

To simplify the technical calculations in the following, in-
stead of the full surface wave equations, it will use a modified 
Korteweg-de Vries (KdV) model with exact dispersion relation; 
for the kind of waves under consideration, this is a valid approxi-
mation. As has been shown in previous work, see also (Andono-
wati and Groesen, 2003), for narrow banded spectra, the third 
order effects can dominate the second order effects and are res-
ponsible for the large amplification factors. For that reason in a-
nalysis is used third order theory.  

The organization of the paper is as follows. The next session 
present the mathematical model to be used and the third order 
asymptotic expansion for this model. The approximation method 
to the MTA and the extreme position by an explicit expression 
obtained from third order theory are discussed in Section 3. The 
results and the verification of the derived formulas for the extreme 
position are presented in Section 4. Finally, Section 5 presents 
some concluding remarks. 

 
RESEARCH PROCEDURE 
 
Third order theory for the KdV model 

The evolution of rather long and rather small surface gravi-
ty waves is governed to a reasonable approximation by the well 
known KdV equation. In normalized variables, the KdV equation 
with full dispersion (Groesen, 1998) has the form 

       (1) 

with  is the surface elevation and  is the operator that 
produces the dispersion relation between frequency  and wave 
number  for small amplitude waves given by 

 

The laboratory variables for the wave elevation, horizontal 
space and time  are related to the normalized 
variables by , with  
is the uniform water depth and  is the gravity acceleration. 
Consequently, corresponding trans-formed wave parameters such 
as wave length, wave number and angular frequency, are given by 

. 

In this paper, the solution of (1) is approximated by using a 
direct expansion up to third order in the power series of the wave 
elevation. Here, it is written as 

        (2) 

with  is a positive small number representing the order of mag-
nitude of the wave amplitude. The terms  and  
describe the linear first order, the second and third order non-
linear term, respectively. Assuming that the linear term  con-
sists of three frequencies that are close to each other (narrow 
band), in the third order we take only the largest contribution, 
namely the third order side band . The frequencies of the side 
bands are close to the frequency of the linear term. It is known that 
this direct expansion leads to resonance in the third order, see 
[(Andonowati and Groesen, 2003), (Cahyono, 2002) and (Marwan 
and Andonowati, 2003)]. To prevent the resonant term, this 
expansion modify using Linstead-Poincare technique (Whitham, 
1974) by allowing a nonlinear modification of the dispersion 
relation  

                       (3) 

with  

For the linear signal we take 

,                       (4) 

with . Here, , where 
(  are related by the linear dispersion relation, and with 

 the phase of each mono-chromatic wave,  denotes the 
complex conjugate of the previous terms. The following proce-
dure has been described in (Andonowati, et all, 2003), (Cahyono, 
2002) and (Marwan and Andonowati, 2003) without taking the 
phases of the mono-chromatic components of the signals into 
account, i.e. for . Since this paper aim to investigate the 
effect of these mono-chromatic phases on the global behavior of 
the propagating signal along the wave tank, it add arbitrary pha-
se . 

Substituting (2) and (3) into (1), for  as the linearized 

solution as in (4), the second order leads to  
 and  

 
           ,                                                (5) 

with  

 
In order to distinguish the free waves that will be intro-

duced later, the second order solution in (5) call as the second 
order bound wave; this solution contains non-linear terms as the 
results of mode generation. The resonant terms in the third order 
bound wave, lead to the non-linear dispersion relation  

 
with 
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     (6) 

 
The third order side band can be expressed as 
 

 

 
,            (7) 

 
with  

 

 

 

 
And 
 

. 
 

This paper mimic the generation of waves in a hydrodyna-
mic laboratory and there are interested in a solution that at a given 
position, say , is given by the signal 

        (8) 

with . To satisfy the signal at this position, the 
contribution of the second order and third order side band terms at 

 have to be compensated by harmonic modes, called free 
waves. The second order free waves are given by 

 

.          (9) 

This is a wave with the same frequencies as in the second order 
bound wave, but consisting of harmonic modes that satisfy the 
linear dispersion relation. The third order side band free wave 
consists similarly of monochromatic waves and is of the form 

 

 

,                           (10) 

with . Taken together, 
the third order solution of (1) and satisfying (8) is  

 

.                       (11) 

 

Maximal Temporal Amplitude and the extreme position 

In previous studies of bichromatics waves (Groesen, et all, 
1999), (Stansberg, 1998), (Westhuis, et all, 2000) and (Westhuis, 
et all, 2001), it was found experimentally, numerically and theo-
retically that depending on the wave amplitude, but just as well as 
on the frequency difference, large deformations and amplitude 
increase can develop. This was made more clearly visible in (An-
donowati and Groesen, 2003), where, for the corresponding op-
tical problem, the so-called maximal temporal amplitude (MTA) 
was introduced. At each position downstream from the wave 
generator, this MTA measures the maximum over time of the sur-
face elevation. When plotted as a curve in the downstream direc-
tion, this curve shows (almost periodic) oscillatory behaviour in 
which several wavelengths can be seen and interpreted. At spe-
cific locations the curve achieves its maximum at places where the 
amplitude amplification (compared to the amplitude of the genera-
ted wave) is maximal and where `extreme' waves appear. Accord-
ing to the previous section, the third order approximated solution 
of (1) is given by (11), we will use this approximation to study the 
MTA, and hence we take the MTA to be defined as 

.                     (12) 

In deterministic extreme wave generation performed in 
hydrodynamic laboratories, MTA is proved to be a useful concept 
to predict the position where the most extreme signal appears in 
the wave tank, (Andonowati, et all, 2004). Further-more, it gives a 
practical value of the Amplitude Amplification Factor, AAF = 

, with  is the first position where 
, for  and  is the 

length of the wave tank. Therefore it is of interest to calculate the 
value of  and the dependence of this position on the input 
signal at the 
wave maker. 

In (Andonowati and Groesen, 2003) an explicit expression 
was given for  for input signals in the form of bichromatics 
waves with zero phases for a KdV model of an optical pulse pro-
pagation in non-linear media using third order approximation. A 
similar formulation for bi-chromatics is derived in (Marwan and 
Andonowati, 2003) for propagation of water wave where the ini-
tial phases of the mono-chromatic components is zero. 

In the following the derivation the explicit expression of 
 for an input signal in the form of bi-chromatics wave are 

briefly. It is shown that this  does not depend on the initial 
phases of the mono-chromatic components. Denoting the indices 1 
and 2 in the expressions (4) - (10) by (+) and (-) for the bi-
chromatics signals, the linear term can be written as  

,                    (13) 
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with ,  the phase of each mono-
chromatic wave, and the wave numbers ordered according to 

.  
The following expressions are rewritten from (5) - (10). 

                     (14) 

 

                     (15) 

 

                  (

 

16) 

Using this wave number correction, the first order expansion  
can be written as 

 

                                                        (17) 

ith 
 
w

.  
The third order bound and free waves are expressed as 
 

 

 
 
                                (18) 

and 
 

 

 
 

                                     (19) 
 

ithw   and  are nonlinear wave numbers, corresponding to 
 and  respec ely,  tiv

 
, 

 
 

 

The coefficients of third order side bands are , 
with 

 
and 

 
see (Marwan and Andonowati, 2003). 

For wave parameters of laboratory interest , the 
expressions (17) and (18) show that the first and the third order 
side band bound wave have approximately the same carrier. The 
superposition of the first order with the third order side band 
bound and free waves leads to a spatial envelope of the carrier 
wave, resulting in a modulation of the carrier. Under the assump-
tion  the phases of first order, third order side band 
bound and free waves are the same, namely , and so the spatial 
envelope has modulation length . This 
value can in fact be obtained by considering the superposition of 
the third order bound waves and free waves only where  appears 
as the 'wave length' of MTA. The positions of zero phase of the 
spatial envelope show that the location of the first maximum of 
MTA does not depend on the phases of mono-chromatic com-
ponents and it can be expressed in the form 

 

 

 

       (20) 

 
with  
 

 

 

 
 

 
RESULTS AND DISCUSSION 
 
Verification of the derived formulas 

In what follows, the formulas derived in Section 3 are veri-
fied. Here, it is used the available numerical and experimental re-
sults. For the experiments, the propagated signals are measured 
only at a limited number of locations in the wave tank, hence, the 
location where the MTA is maximal, the extreme position, can 
only be obtained within a range determined by the locations where 
the signals are measured.  

The variables are used here in standard SI units [m, s]. A 
typical wave tank with a layer of water of 5m deep, and with a 
length of 250m, and express all quantities in laboratory variables 
are considered. The predicted extreme position  derived by 
the third order approximation (TOA) in (20) will be compared 
with results from a numerical wave tank, HUBRIS, used at Mari-
time Research Institute Netherlands (MARIN) (Westhuis, et. al., 
2001) and with experimental results reported in (Stansberg, 1998) 
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and (Westhuis, et al., 2001). We present the results in Table 1, 
providing the reference to the experiments. It is seen that the pre-
dicted values are reasonably close to both the numerical values as 
well as to the experimental results.  
 
Table 1.  Comparisons of the extreme positions calculated 

with third order theory (20) above, the numerical results 
  calculated numerically, and the experi-

mental result  with specification of the 
various cases listed in the given references. 

 

Case  
    

 
 

 
 
 

  
 

(Westhuis, et all, 
2001) 

 
 
 

  

 
(Stansberg, 1998) 
and (Westhuis, et 

all, 2001) 
 
 
 

  
 

(Westhuis, et all, 
2001) 

 
 
 

  
 

(Westhuis, et all, 
2001) 

 
 
 

Figure 1 present MTA curve computed numerically with 
HUBRIS for an input bichromatics signals with amplitude, 

, and frequencies of the monochromatics  
and . It can be seen that this signal deform in its 
propagation. The signal has amplitude 0.16 m at the certain 
position (x=0) and 0.32 m at the extreme position (x=127 m). So, 
the amplification factor of this signal is 2. Experiments for this 
case have been conducted independently in (Stansberg, 1998) and 
(Westhuis, et all, 2001) where in both experiments the largest 
signal appears at a distance of approximately 120m away from the 
wave-maker, which is the extreme position. Figure 2 show signals 
at different locations in the wave tank computed using HUBRIS. 
As shown in Table 1, for this case the third order approximation in 
(20) gives the position of  m away from the wave 
maker. 
 

            
Figure 1.  MTA for bi-chromatics signal with  

                and   
 

CONCLUDING REMARKS 

This paper has considered propagation in initially still water 
of waves generated at a wave maker by a bi-chromatics signal. 
This class contain signals having two mono-chromatic compo-
nents of the same amplitudes but slightly different of frequencies. 

While propagating downstream from the wave maker, the input 
signals changes in shape and amplitude, in the considered cases, a 
largely amplified elevation is found somewhere down stream in 
the tank. By using MTA, location of the maximum of surface ele-
vation over time can be defined. Furthermore, prescribing the po-
sition where the extreme wave has to appear in the wave tank, the 
MTA can also be used to assist what kind of signal has to be 
generated at the wave-maker in such a way that the propagating 
signal produces the requested extreme wave elevation at the re-
quested position. The comparisons of this result to both experi-
mental and numerical results show reasonably close values of the 
predicted locations and the known results. Future works will fo-
cus on Benjamin-Feir wave group propagation and apply similar 
methods used in this paper. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       Figure 2.  Bi-chromatics signal at some positions with   
                        and    
                         computed using HUBRIS. 
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