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Abstrak 
 

Power flow analysis is backbone of power system analysis and design. It is essential for power system 
analysis in operational as well as in planning stages. Power flow calculation is normally performed 
by simply considering that the system under study is completely balance. Actual distribution system is 
inherently unbalance and therefore three-phase power flow is necessary to accurately simulate the 
unbalance system. However, inclusion of unbalance increases the dimension of problem and, as 
distribution system is commonly constructed as radial system with high R/X ratio, it may also cause 
the sophisticated power flow algorithms fail to converge. The robust algorithm for three-phase power 
flow is therefore needed. In this paper, three-phase power flow for unbalance distribution system is 
carried out using Forward-Backward Propagation Technique. The equivalent injection current 
method is employed to represent the loads and shunt admittances. The algorithm starts with mapping 
the distribution network to determine the forward and backward propagation paths. The backward 
propagation is used to calculate branch currents using the bus injection currents. The forward 
propagation is employed to calculate bus voltages using the obtained branch currents and line 
impedances. The algorithm offers robust and good convergence characteristics for radial distribution 
system. The algorithm is presented for the IEEE 34-bus system with satisfied generated results.  
Keyword: Convergence; equivalent injection current; forward-backward propagation; unbalance 

system  
 

Introduction 
Power flow calculation is backbone of power system analysis and design. It is essential for analysis of any 

power system in the operational as well as planning stages. The calculation is initially carried out by formulating the 
network equation. Node-voltage method, which is the most suitable form for many power system analyses, is 
commonly used. Mathematically, power flow problem requires solution of simultaneous nonlinear equations and 
normally employs an iterative method, such as Gauss-Seidel and Newton-Raphson. 

Power flow calculation is normally performed by simply considering that the system under study is balance. 
Hence, the calculations are carried out for single phase assuming that the other two phases are exactly the same but 
with the 120 degrees phase difference. The asymmetry in lines and loads produces a certain level of unbalance in 
real power system and this is considered as disturbance whose level should be controlled to maintain the 
electromagnetic compatibility of the system (Mayordomo, Izzeddine et al. 2002).  

For distribution system, in particular, the system is inherently unbalanced, due to factors such as the 
unbalance of customer loads, the presence of unsymmetrical line spacing, and the combination of single, double and 
three-phase line sections. Therefore, three-phase power flow is necessary to accurately simulate the unbalance 
system.  

Inclusion of unbalance increases the dimension of problem as all the three phases need to be considered 
instead of single phase balanced representation. On the other hand, distribution system commonly constructed as 
radial system with high R/X ratio may cause the sophisticated power flow algorithms fail to converge. The robust 
algorithm for three-phase power flow is therefore needed. 

Decomposition of the coupled unbalance system into positive, negative and zero symmetrical components is 
the most popular approach used in three-phase power flow algorithms (Lo and Zhang 1993; Zhang and Chen 1994). 
This eliminates the mutual coupling between phases so a three-phase power flow can be run three times, once for 
each phase. However, if the coupling between sequences occurs, then there is no real advantage in decomposing the 
system into the symmetrical components. Furthermore, this may result in significant error in calculation.  

Another approach is decoupling the three-phase system into individual phases by introducing compensation 
current injections (Chen, Chen et al. 1991; Cheng and Shirmohammadi 1995; Lin and Teng 2000; Vieira, Freitas et 
al. 2004). Therefore, a three-phase power flow can be solved independently for every phase without utilization of 
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symmetrical components. All components are modeled by phase voltages, admittances and independent current 
sources. This approach will work well as long as every component can be modeled in the admittance matrix or can 
be converted into equivalent injection current.  

The methods for three-phase distribution networks can be basically divided into two classes, Gauss-Seidel 
(Teng 2002; Vieira, Freitas et al. 2004) and Newton-Raphson (Garcia, Pereira et al. 2000; Lin and Teng 2000; da 
Costa, de Oliveira et al. 2007). Gauss-Seidel method needs much iteration and is known to be slow. Newton-
Raphson has good convergence characteristic, but the Jacobian that needs to be partially or totally calculated in 
every iteration makes this approach unattractive.  

This paper presents three-phase power flow for unbalance distribution system using forward-backward 
propagation technique. The algorithm works directly on the system without any modification. Therefore, there is no 
need to decompose the system into symmetrical components as well as to decouple the system into individual 
phases. However, the conversion of load and shunt element into their equivalent injection current is necessary. 
Distribution line charging is usually too small to be included (Lin and Teng 2000). The algorithm is implemented on 
IEEE 34-bus system including asymmetrical lines and unbalance loads.  

 
System Modeling 
Line Modeling 

The accuracy of three-phase power flow results greatly depends on the line impedance model used. 
Therefore, an exact model of a three-phase line section needs to be firstly developed. The model of distribution line 
feeder as in (Kersting and Phillips 1995) will be developed and used in this paper. An equivalent circuit for a three-
phase line section is shown in Fig. 1.   

 
Fig. 1.  Three-phase line model 

The modeling of three-phase lines starts with determination of self and mutual impedances of a line section 
which are functions of the conductors and the spacing between conductors on the pole or underground. The 
“modified” form of Carson’s equations are used to determine the self and mutual impedances of this model and are 
given by the following equations: 
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Where ri is the conductor resistance (Ω/mile), GMRi is the conductor geometric mean radius (ft), and Dij is 
the spacing between conductors i and j (ft). Application of (1) and (2) to the three-phase line indicated in Fig. 1. 
results in a 4×4 “primitive impedance matrix”: 
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By applying Kron reduction, this matrix may be reduced into 3×3 “phase impedance matrix” whose elements 
are determined by the following equation: 

nnnjinijij zzzzZ −=   (4) 
 
And the resulted “phase impedance matrix” is: 
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Load Modeling 
The load (balance and unbalance) is represented by its equivalent injection current. The load modeling as in 

(Vieira, Freitas et al. 2004) is adopted in this paper. For three-phase loads connected in wye or single-phase loads 
connected line to neutral, the equivalent injection currents at kth bus are determined by the following equation:  
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Where Pm, Qm, Vm
* denote real power, reactive power, and complex conjugate of the voltage phasor for each 

phase, respectively. For three-phase loads connected in delta or single-phase loads connected line to line, the 
equivalent injection currents at the kth bus are determined by the following equations: 
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Where Pn, Qn, n ∈ [ab, bc, ca], represents the real and reactive load connected between the respective phases, 
and Vm

* , m ∈ [a, b, c] denotes the complex conjugate of the voltage phasor for each phase, respectively. 
Shunt Admittance Modeling 

Three phase shunt capacitors can also be represented by equivalent injection currents (Vieira, Freitas et al. 
2004). Assuming that the capacitor bank has an ungrounded wye connection, the current injection in each phase can 
be expressed by: 
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Where ysh = jQ0/|V0|2; Q0 is the nominal reactive power per phase and |V0| is the magnitude of the nominal voltage 
each phase. If the capacitor bank has a grounded wye connection, then the injection current is: 
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Forward-Backward Algorithm 

Power flow is calculated by initially mapping the distribution network to determine forward and backward 
propagation paths followed by branch current calculation and bus voltages calculation. 
Branch Current Calculation 

Using backward propagation path, branch current can be calculated using the equivalent bus injection 
currents. The branch current is successively calculated for the network ends toward the source (swing). The voltage 
at each bus therefore needs to be firstly determined. For the first iteration, the voltage at each bus is set to 1.0 pu 
with the angle of 0, -120 and 120 degrees for phase a, b, and c, respectively. These voltages are updated during the 
iteration and therefore the injection currents will also change.  
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Fig. 2.  Part of a distribution system 

Fig. 2 indicates a part of distribution system and bus injection currents. The relationships between branch 
currents and injection currents are: 

kjk II −=  

ljl II −=  (10) 

kjljkij IIII −+=  
Where Ijk is the branch current between bus j and bus k, and Ij injection currents at bus, respectively. 
Bus Voltage Calculation 

Using forward propagation path, the voltage at each bus is calculated using the obtained branch currents and 
line impedance. The voltages are consecutively calculated from the source (swing) toward the network ends. The 
voltage of swing bus is kept constant at 1.0∠00 pu, 1.0∠-1200 pu, and 1.0∠1200 pu for phase a, b, and c, 
respectively. For the part of system indicated in Fig. 2, the bus voltages can be calculated as follows: 

ijijij IZVV −=
 
jkjkjk IZVV −=                (11) 

jljljl IZVV −=  
Where Vj is the voltage at bus j and Zjk is the impedance of line section between bus j and k. The updated bus 

voltages are then used to calculate the bus injection currents. It should be noted that all calculations are carried in the 
three-phase frame. 
 
Convergence Criteria 

The outlined steps for branch currents and bus voltages calculations are invoked during the power flow 
iteration. The iteration converges if the different of bus voltages for the consecutive iterations is equal to or less than 
the prescribed tolerance. The voltage mismatch of bus j at the nth iteration is given by:  

1−−=Δ n
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n
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ε<Δ )(Re n
jV ;  j ∈ all buses                 (12) 

ε<Δ )(Im n
jV ;  j ∈ all buses 

Where ε is the prescribed tolerance. If these equations are satisfied, then the iteration stops. Otherwise, 
iteration process is repeated. Once the load flow iteration converges all the branch currents and voltage at each bus 
are known. The real and reactive power loss can therefore be calculated. The three-phase power flow algorithm 
using Forward-Backward Propagation technique is given in the flowchart of Fig. 3.  
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Fig. 3.  The flowchart for three-phase power flow calculation using Forward-Backward Propagation technique 

 
Simulation 
System Data 

The simulation is carried out for the IEEE 34-bus system (Kersting 1991) indicated in Fig. 4. The system 
includes balance as well as unbalance loads. A minor modification is performed for the system to only include three 
phase asymmetrical lines. However, the load data and the capacitor data are remain the same. The system load and 
branch data are respectively given in Table 1 (A and B) and Table 2.  

Table 1(a) Balance Loads of the IEEE 34-bus System 
Phase A Phase B Phase C Bus# Υ/Δ kW kVAr kW kVAr kW kVAr 

860 Υ 19.91 15.94 19.91 15.94 19.91 15.94 
840 Υ 8.86 7.09 8.86 7.09 8.86 7.09 
844 Δ 133.444 106.83 133.444 106.88 133.444 106.88 
848 Υ 19.45 15.57 19.45 15.57 19.45 15.57 
890 Δ 27 21.62 27 21.62 27 21.62 

Note 
1. Swing: bus 800 
2. MVA base: 2.5 MVA 

Table 1(b) Unbalance Loads of  the IEEE 34-bus System 
Phase A Phase B Phase C Bus# Υ/Δ kW kVAr kW kVAr kW kVAr 

806 Υ 0 0 31.22 16.14 26.07 13.84 
810 Δ 0 0 15.88 8.21 0 0 
820 Δ 33.9 17.52 0 0 0 0 
822 Υ 135.5 70.07 0 0 0 0 
824 Υ 0 0 0.39 0.2 0 0 
826 Υ 0 0 41.93 21.68 0 0 
828 Δ 0 0 0 0 2.78 1.44 
830 Δ 6.18 3.2 0 0 0 0 
834 Υ 3.99 2.06 12.55 6.49 12.82 6.63 
836 Δ 27.37 14.15 10.55 5.45 42.05 21.74 
838 Δ 27.61 14.27 0 0 0 0 
840 Υ 17.49 9.04 21.81 11.27 0 0 
842 Υ 0 0 0 0 0 0 
844 Δ 9.12 4.71 0 0 0 0 
846 Υ 0 0 24.59 12.71 22.23 11.49 
848 Υ 0 0 22.62 11.7 0 0 
856 Υ 0 0 3.71 1.92 0 0 
858 Δ 6.68 3.45 1.08 0.56 5.35 2.77 
860 Υ 15.66 8.09 20.86 10.78 111.15 57.46 
862 Υ 0 0 0 0 0 0 
864 Δ 0.63 0.33 0 0 0 0 
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Fig. 4.  The IEEE 34-bus system used for simulation 

 
Table 2. Branch Data of The IEEE 34-Bus System 
Bus length Line Condctr Neutral Condctr 

Fr To Config. (ft) R  GMR R GMR 
800 802 BACN 2580 1.69 0.00418 1.69 0.00418 
802 806 BACN 1730 1.69 0.00418 1.69 0.00418 
806 808 BACN 32230 1.69 0.00418 1.69 0.00418 
808 810 BCAN 5840 2.55 0.00452 2.55 0.00452 
808 812 BACN 37500 1.69 0.00418 1.69 0.00418 
812 814 BACN 29730 1.69 0.00418 1.69 0.00418 
814 850 BACN 10 1.69 0.00418 1.69 0.00418 
816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 
816 824 BACN 10210 1.69 0.00418 1.69 0.00418 
818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 
820 822 ABCN 13740 2.55 0.00452 2.55 0.00452 
824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 
824 828 BACN 840 1.69 0.00418 1.69 0.00418 
828 830 BACN 20440 1.69 0.00418 1.69 0.00418 
830 854 BACN 520 1.69 0.00418 1.69 0.00418 
832 858 BACN 4900 1.69 0.00418 1.69 0.00418 
832 888 BACN 100 1.69 0.00418 1.69 0.00418 
834 860 BACN 2020 1.69 0.00418 1.69 0.00418 
834 842 BACN 280 1.69 0.00418 1.69 0.00418 
836 840 BACN 860 1.69 0.00418 1.69 0.00418 
836 862 BACN 280 1.69 0.00418 1.69 0.00418 
842 844 BACN 1350 1.69 0.00418 1.69 0.00418 
844 846 BACN 3640 1.69 0.00418 1.69 0.00418 
846 848 BACN 530 1.69 0.00418 1.69 0.00418 
850 816 BACN 310 1.69 0.00418 1.69 0.00418 
852 832 BACN 10 1.69 0.00418 1.69 0.00418 
854 856 BCAN 23330 2.55 0.00452 2.55 0.00452 
854 852 BACN 36830 1.69 0.00418 1.69 0.00418 
858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 
858 834 BACN 5830 1.69 0.00418 1.69 0.00418 
860 836 BACN 2680 1.69 0.00418 1.69 0.00418 
862 838 ACBN 4860 1.69 0.00418 1.69 0.00418 
888 890 BACN 10560 1.12 0.00446 1.12 0.00446 

 

3'
4' 3'

4'

24'

 
Fig. 5. Overhead line spacing for the IEEE 34-bus system 

 
Fig. 5 shows the spacing distances between the phase conductors and the neutral conductor. The line 

configuration is given in Table 2 (3rd column) indicating that the phase conductors are sequentially placed starting 
from the left side position.  
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Simulation Results 
The system is run using the algorithm presented in Fig. 3. The simulation is coded using Matlab version 7.0 

(R14). For the system of Fig.4, the three-phase power flow calculation takes 5 iterations to converge. This iteration 
number is fairly small indicating that the algorithm is robust for unbalance power flow calculation. The results of 
simulation including magnitude and angle of voltage at every phase are given in Table 3. The simulation also 
indicates the real and reactive power losses of  8.2 kW and 3.4 kVAr, respectively. 

 
Table 3. Simulation Results of The IEEE 34-Bus Unbalance System 

Volt at phase c Volt at phase c Volt at phase c bus 
no mag Angle mag Angle mag Angle 
800 100 0.00 100 -120.00 100 120.00 
802 99.93 -0.01 99.94 -120.01 99.94 119.99 
806 99.88 -0.02 99.89 -120.02 99.90 119.98 
808 99.01 -0.22 99.19 -120.17 99.17 119.80 
810 99.01 -0.22 99.18 -120.18 99.17 119.80 
812 97.99 -0.45 98.38 -120.35 98.35 119.58 
814 97.18 -0.64 97.75 -120.49 97.70 119.41 
816 97.17 -0.64 97.74 -120.49 97.69 119.41 
818 97.14 -0.64 97.74 -120.49 97.69 119.41 
820 96.32 -0.66 97.84 -120.49 97.66 119.49 
822 96.11 -0.67 97.88 -120.49 97.65 119.52 
824 97.02 -0.69 97.50 -120.54 97.47 119.33 
826 97.02 -0.69 97.49 -120.54 97.48 119.33 
828 97.01 -0.69 97.48 -120.54 97.46 119.32 
830 96.72 -0.81 97.08 -120.63 97.01 119.17 
832 96.20 -1.02 96.36 -120.79 96.19 118.88 
834 96.07 -1.08 96.17 -120.84 95.97 118.80 
836 96.05 -1.08 96.15 -120.84 95.94 118.80 
838 96.04 -1.08 96.14 -120.84 95.94 118.80 
840 96.05 -1.08 96.15 -120.84 95.94 118.80 
842 96.07 -1.08 96.17 -120.85 95.97 118.80 
844 96.07 -1.09 96.16 -120.86 95.96 118.79 
846 96.08 -1.11 96.15 -120.87 95.97 118.77 
848 96.08 -1.11 96.16 -120.87 95.97 118.77 
850 97.18 -0.64 97.75 -120.49 97.70 119.41 
852 96.20 -1.02 96.36 -120.79 96.19 118.89 
854 96.71 -0.81 97.07 -120.63 97.00 119.16 
856 96.71 -0.81 97.06 -120.63 97.00 119.16 
858 96.14 -1.05 96.27 -120.82 96.09 118.85 
860 96.06 -1.08 96.16 -120.84 95.95 118.80 
862 96.05 -1.08 96.15 -120.84 95.94 118.80 
864 96.14 -1.05 96.27 -120.82 96.09 118.85 
888 96.20 -1.02 96.36 -120.79 96.19 118.89 
890 96.18 -1.02 96.34 -120.79 96.17 118.89 

 
Conclusion 

Three-phase power flow for an unbalance distribution system is carried out using Forward-Backward 
Propagation Technique. The IEEE 34-bus unbalance system is used for simulation. The main conclusions are:  
• The implemented algorithm works directly on the simulated system and, therefore, there is no need to transform 

the system into the symmetrical components as well as to decouple the three-phase into individual phases;  
• The algorithm is robust for the radial unbalance distribution system with good convergence characteristic. 
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