APPLICATION OF FORWARD – BACKWARD PROPAGATION ALGORITHM FOR THREE – PHASE POWER FLOW ANALYSIS IN RADIAL DISTRIBUTION SYSTEM

Agus Ulinuha

Department of Electrical Engineering, Muhammadiyah University of Surakarta Jl. A. Yani Pabelan, PO BOX 1 Kartasura Surakarta, Postcode 57102 Phone: +62 271 717417 Fax +62 271 715448 Email: <u>ulinagus1970@gmail.com</u>

Abstrak

Power flow analysis is backbone of power system analysis and design. It is essential for power system analysis in operational as well as in planning stages. Power flow calculation is normally performed by simply considering that the system under study is completely balance. Actual distribution system is inherently unbalance and therefore three-phase power flow is necessary to accurately simulate the unbalance system. However, inclusion of unbalance increases the dimension of problem and, as distribution system is commonly constructed as radial system with high R/X ratio, it may also cause the sophisticated power flow algorithms fail to converge. The robust algorithm for three-phase power flow is therefore needed. In this paper, three-phase power flow for unbalance distribution system is carried out using Forward-Backward Propagation Technique. The equivalent injection current method is employed to represent the loads and shunt admittances. The algorithm starts with mapping the distribution network to determine the forward and backward propagation paths. The backward propagation is used to calculate branch currents using the bus injection currents. The forward propagation is employed to calculate branch currents using the obtained branch currents and line impedances. The algorithm offers robust and good convergence characteristics for radial distribution system. The algorithm is presented for the IEEE 34-bus system with satisfied generated results.

Keyword: Convergence; equivalent injection current; forward-backward propagation; unbalance system

Introduction

Power flow calculation is backbone of power system analysis and design. It is essential for analysis of any power system in the operational as well as planning stages. The calculation is initially carried out by formulating the network equation. Node-voltage method, which is the most suitable form for many power system analyses, is commonly used. Mathematically, power flow problem requires solution of simultaneous nonlinear equations and normally employs an iterative method, such as Gauss-Seidel and Newton-Raphson.

Power flow calculation is normally performed by simply considering that the system under study is balance. Hence, the calculations are carried out for single phase assuming that the other two phases are exactly the same but with the 120 degrees phase difference. The asymmetry in lines and loads produces a certain level of unbalance in real power system and this is considered as disturbance whose level should be controlled to maintain the electromagnetic compatibility of the system (Mayordomo, Izzeddine et al. 2002).

For distribution system, in particular, the system is inherently unbalanced, due to factors such as the unbalance of customer loads, the presence of unsymmetrical line spacing, and the combination of single, double and three-phase line sections. Therefore, three-phase power flow is necessary to accurately simulate the unbalance system.

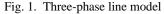
Inclusion of unbalance increases the dimension of problem as all the three phases need to be considered instead of single phase balanced representation. On the other hand, distribution system commonly constructed as radial system with high R/X ratio may cause the sophisticated power flow algorithms fail to converge. The robust algorithm for three-phase power flow is therefore needed.

Decomposition of the coupled unbalance system into positive, negative and zero symmetrical components is the most popular approach used in three-phase power flow algorithms (Lo and Zhang 1993; Zhang and Chen 1994). This eliminates the mutual coupling between phases so a three-phase power flow can be run three times, once for each phase. However, if the coupling between sequences occurs, then there is no real advantage in decomposing the system into the symmetrical components. Furthermore, this may result in significant error in calculation.

Another approach is decoupling the three-phase system into individual phases by introducing compensation current injections (Chen, Chen et al. 1991; Cheng and Shirmohammadi 1995; Lin and Teng 2000; Vieira, Freitas et al. 2004). Therefore, a three-phase power flow can be solved independently for every phase without utilization of

symmetrical components. All components are modeled by phase voltages, admittances and independent current sources. This approach will work well as long as every component can be modeled in the admittance matrix or can be converted into equivalent injection current.

The methods for three-phase distribution networks can be basically divided into two classes, Gauss-Seidel (Teng 2002; Vieira, Freitas et al. 2004) and Newton-Raphson (Garcia, Pereira et al. 2000; Lin and Teng 2000; da Costa, de Oliveira et al. 2007). Gauss-Seidel method needs much iteration and is known to be slow. Newton-Raphson has good convergence characteristic, but the Jacobian that needs to be partially or totally calculated in every iteration makes this approach unattractive.


This paper presents three-phase power flow for unbalance distribution system using forward-backward propagation technique. The algorithm works directly on the system without any modification. Therefore, there is no need to decompose the system into symmetrical components as well as to decouple the system into individual phases. However, the conversion of load and shunt element into their equivalent injection current is necessary. Distribution line charging is usually too small to be included (Lin and Teng 2000). The algorithm is implemented on IEEE 34-bus system including asymmetrical lines and unbalance loads.

System Modeling

Line Modeling

The accuracy of three-phase power flow results greatly depends on the line impedance model used. Therefore, an exact model of a three-phase line section needs to be firstly developed. The model of distribution line feeder as in (Kersting and Phillips 1995) will be developed and used in this paper. An equivalent circuit for a three-phase line section is shown in Fig. 1.

a	—► la	Zaa	<u> </u>	+
Van			Zab	Va'n
L.		Zpp	ļ.	Zbc
b			1	+
Vbn			Zbc	Vb'n
c —				
Vcn				+ Vc'n
-				-

The modeling of three-phase lines starts with determination of self and mutual impedances of a line section which are functions of the conductors and the spacing between conductors on the pole or underground. The "modified" form of Carson's equations are used to determine the self and mutual impedances of this model and are given by the following equations:

$$z_{ii} = r_i + 0.0953 + j0.12134 \times \left| \ln(1/GMR_i) + 7.934 \right| \,\Omega/\text{mi} \tag{1}$$

$$z_{ij} = 0.0953 + j0.12134 \times \left[\ln(1/D_{ij}) + 7.934 \right] \Omega/\text{mi}$$
⁽²⁾

Where r_i is the conductor resistance (Ω /mile), GMR_i is the conductor geometric mean radius (ft), and D_{ij} is the spacing between conductors *i* and *j* (ft). Application of (1) and (2) to the three-phase line indicated in Fig. 1. results in a 4×4 "primitive impedance matrix":

		z_{ab}		
[Zprim] =	z _{ba}	z_{bb}	z_{bc}	z_{bn}
[2p1] -	z _{ca}	z_{cb}	z_{cc}	z _{cn}
	z _{na}	z_{nb}	z_{nc}	z _{nn} _

By applying Kron reduction, this matrix may be reduced into 3×3 "phase impedance matrix" whose elements are determined by the following equation:

$$Z_{ij} = z_{ij} - z_{in} z_{nj} / z_{nn} \tag{4}$$

And the resulted "phase impedance matrix" is:

$$\begin{bmatrix} Z_{abc} \end{bmatrix} = \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} \\ Z_{ba} & Z_{bb} & Z_{bc} \\ Z_{ca} & Z_{cb} & Z_{cc} \end{bmatrix}$$
(5)

Load Modeling

The load (balance and unbalance) is represented by its equivalent injection current. The load modeling as in (Vieira, Freitas et al. 2004) is adopted in this paper. For three-phase loads connected in wye or single-phase loads connected line to neutral, the equivalent injection currents at k^{th} bus are determined by the following equation:

$$I_{m}^{k} = \frac{P_{m}^{k} - jQ_{m}^{k}}{V_{m}^{k}}; \ m \in [a, b, c]: \text{phase}$$
(6)

Where P_m , Q_m , V_m^* denote real power, reactive power, and complex conjugate of the voltage phasor for each phase, respectively. For three-phase loads connected in delta or single-phase loads connected line to line, the equivalent injection currents at the k^{th} bus are determined by the following equations:

$$I_{a}^{k} = \frac{P_{ab}^{k} - jQ_{ab}^{k}}{V_{a}^{k} * -V_{b}^{k} *} - \frac{P_{ca}^{k} - jQ_{ca}^{k}}{V_{c}^{k} * -V_{a}^{k} *}$$

$$I_{b}^{k} = \frac{P_{bc}^{k} - jQ_{bc}^{k}}{V_{b}^{k} * -V_{c}^{k} *} - \frac{P_{ab}^{k} - jQ_{ab}^{k}}{V_{a}^{k} * -V_{b}^{k} *}$$

$$I_{c}^{k} = \frac{P_{ca}^{k} - jQ_{ca}^{k}}{V_{c}^{k} * -V_{a}^{k} *} - \frac{P_{bc}^{k} - jQ_{bc}^{k}}{V_{b}^{k} * -V_{c}^{k} *}$$
(7)

Where $P_n, Q_n, n \in [ab, bc, ca]$, represents the real and reactive load connected between the respective phases, and V_m^* , $m \in [a, b, c]$ denotes the complex conjugate of the voltage phasor for each phase, respectively. **Shunt Admittance Modeling**

Three phase shunt capacitors can also be represented by equivalent injection currents (Vieira, Freitas et al. 2004). Assuming that the capacitor bank has an ungrounded wye connection, the current injection in each phase can be expressed by:

$$I_{a}^{sh} = \frac{y^{sh}}{3} \left(-2V_{a}^{k} + V_{b}^{k} + V_{c}^{k} \right)$$

$$I_{b}^{sh} = \frac{y^{sh}}{3} \left(V_{a}^{k} - 2V_{b}^{k} + V_{c}^{k} \right)$$

$$I_{c}^{sh} = \frac{y^{sh}}{3} \left(V_{a}^{k} + V_{b}^{k} - 2V_{c}^{k} \right)$$
(8)

Where $y^{sh} = jQ^0 / |V_0|^2$; Q^0 is the nominal reactive power per phase and $|V_0|$ is the magnitude of the nominal voltage each phase. If the capacitor bank has a grounded wye connection, then the injection current is:

$$I_{a}^{sh} = -y^{sh}V_{a}^{k}$$

$$I_{b}^{sh} = -y^{sh}V_{b}^{k}$$

$$I_{c}^{sh} = -y^{sh}V_{c}^{k}$$
(9)

Forward-Backward Algorithm

Power flow is calculated by initially mapping the distribution network to determine forward and backward propagation paths followed by branch current calculation and bus voltages calculation.

Branch Current Calculation

Using backward propagation path, branch current can be calculated using the equivalent bus injection currents. The branch current is successively calculated for the network ends toward the source (swing). The voltage at each bus therefore needs to be firstly determined. For the first iteration, the voltage at each bus is set to 1.0 pu with the angle of 0, -120 and 120 degrees for phase a, b, and c, respectively. These voltages are updated during the iteration and therefore the injection currents will also change.

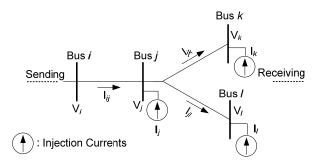


Fig. 2. Part of a distribution system

Fig. 2 indicates a part of distribution system and bus injection currents. The relationships between branch currents and injection currents are:

$$I_{jk} = -I_k$$

$$I_{jl} = -I_l$$

$$I_{ij} = I_{jk} + I_{jl} - I_k$$
(10)

Where I_{ik} is the branch current between bus j and bus k, and I_i injection currents at bus, respectively. **Bus Voltage Calculation**

Using forward propagation path, the voltage at each bus is calculated using the obtained branch currents and line impedance. The voltages are consecutively calculated from the source (swing) toward the network ends. The voltage of swing bus is kept constant at $1.0 \angle 0^0$ pu, $1.0 \angle -120^0$ pu, and $1.0 \angle 120^0$ pu for phase a, b, and c, respectively. For the part of system indicated in Fig. 2, the bus voltages can be calculated as follows:

$$V_{j} = V_{i} - Z_{ij}I_{ij}$$

$$V_{k} = V_{j} - Z_{jk}I_{jk}$$

$$V_{l} = V_{j} - Z_{jl}I_{jl}$$
(11)

Where V_j is the voltage at bus j and Z_{jk} is the impedance of line section between bus j and k. The updated bus voltages are then used to calculate the bus injection currents. It should be noted that all calculations are carried in the three-phase frame.

Convergence Criteria

....

The outlined steps for branch currents and bus voltages calculations are invoked during the power flow iteration. The iteration converges if the different of bus voltages for the consecutive iterations is equal to or less than the prescribed tolerance. The voltage mismatch of bus j at the n^{th} iteration is given by:

$$\Delta V_{j}^{n} = V_{j}^{n} - V_{j}^{n-1} \text{ for phase a, b, c}$$

$$\operatorname{Re}\left(\Delta V_{j}^{n}\right) < \varepsilon; \ j \in \text{ all buses}$$

$$\operatorname{Im}\left(\Delta V_{j}^{n}\right) < \varepsilon; \ j \in \text{ all buses}$$

$$(12)$$

Where ε is the prescribed tolerance. If these equations are satisfied, then the iteration stops. Otherwise, iteration process is repeated. Once the load flow iteration converges all the branch currents and voltage at each bus are known. The real and reactive power loss can therefore be calculated. The three-phase power flow algorithm using Forward-Backward Propagation technique is given in the flowchart of Fig. 3.

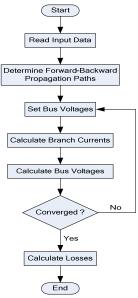


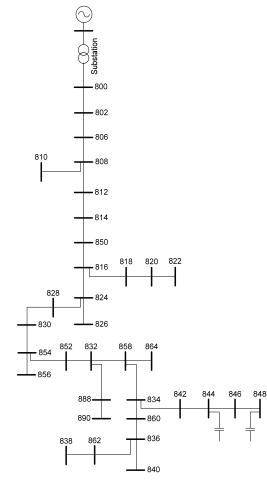
Fig. 3. The flowchart for three-phase power flow calculation using Forward-Backward Propagation technique

Simulation

System Data

The simulation is carried out for the IEEE 34-bus system (Kersting 1991) indicated in Fig. 4. The system includes balance as well as unbalance loads. A minor modification is performed for the system to only include three phase asymmetrical lines. However, the load data and the capacitor data are remain the same. The system load and branch data are respectively given in Table 1 (A and B) and Table 2.

Table I(a) Balance Loads of the IEEE 34-bus System											
Bus#	Y/Δ	Phase A		Phas	e B	Phase C					
Bus#	ΥΔ	kW	kVAr	kW	kVAr	kW	kVAr				
860	Y	19.91	15.94	19.91	15.94	19.91	15.94				
840	Y	8.86	7.09	8.86	7.09	8.86	7.09				
844	Δ	133.444	106.83	133.444	106.88	133.444	106.88				
848	Y	19.45	15.57	19.45	15.57	19.45	15.57				
890	Λ	27	21.62	27	21.62	27	21.62				


Note

1. Swing: bus 800

2. MVA base: 2.5 MVA

Table 1(b) Unbalance Loads of the IEEE 34-bus System

Bus# Y/A		Phase A			se B	Phase C		
		kW	kVAr	kW	kVAr	kW	kVAr	
806	Y	0	0	31.22	16.14	26.07	13.84	
810	Δ	0	0	15.88	8.21	0	0	
820	Δ	33.9	17.52	0	0	0	0	
822	Y	135.5	70.07	0	0	0	0	
824	Y	0	0	0.39	0.2	0	0	
826	Y	0	0	41.93	21.68	0	0	
828	Δ	0	0	0	0	2.78	1.44	
830	Δ	6.18	3.2	0	0	0	0	
834	Y	3.99	2.06	12.55	6.49	12.82	6.63	
836	Δ	27.37	14.15	10.55	5.45	42.05	21.74	
838	Δ	27.61	14.27	0	0	0	0	
840	Y	17.49	9.04	21.81	11.27	0	0	
842	Y	0	0	0	0	0	0	
844	Δ	9.12	4.71	0	0	0	0	
846	Y	0	0	24.59	12.71	22.23	11.49	
848	Y	0	0	22.62	11.7	0	0	
856	Y	0	0	3.71	1.92	0	0	
858	Δ	6.68	3.45	1.08	0.56	5.35	2.77	
860	Y	15.66	8.09	20.86	10.78	111.15	57.46	
862	Y	0	0	0	0	0	0	
864	Δ	0.63	0.33	0	0	0	0	

But Config. length Line Condctr Neutral Condright Fr To (ft) R GMR R GMR 800 802 BACN 2580 1.69 0.00418 1.69 0.00418 802 806 BACN 1730 1.69 0.00418 1.69 0.00418 806 808 BACN 32230 1.69 0.00418 1.69 0.00418 808 810 BCAN 5840 2.55 0.00452 2.55 0.00418 812 BACN 37500 1.69 0.00418 1.69 0.00418 812 BACN 101 1.69 0.00418 1.69 0.00418 814 850 BACN 10210 1.69 0.00418 1.69 0.00418 818 BACN 13740 2.55 0.00452 2.55 0.00452 820 BACN 3030 2.55 0.00418 1.69 0.00418 <	Table 2. Branch Data of The IEEE 34-Bus System									
Hr To C (ft) R GMR R GMR 800 802 BACN 2580 1.69 0.00418 1.69 0.00418 802 806 BACN 1730 1.69 0.00418 1.69 0.00418 806 808 BACN 32230 1.69 0.00418 1.69 0.00418 808 810 BCAN 5840 2.55 0.00452 2.55 0.00452 808 812 BACN 37500 1.69 0.00418 1.69 0.00418 814 BACN 29730 1.69 0.00418 1.69 0.00418 814 850 BACN 10210 1.69 0.00418 1.69 0.00418 818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00418 1.69 0.00418 828 830 BACN 2040	B	us	Config	length	Line	Condctr	Neutral Condctr			
802 806 BACN 1730 1.69 0.00418 1.69 0.00418 806 808 BACN 32230 1.69 0.00418 1.69 0.00418 808 810 BCAN 5840 2.55 0.00452 2.55 0.00452 808 812 BACN 37500 1.69 0.00418 1.69 0.00418 812 814 BACN 29730 1.69 0.00418 1.69 0.00418 814 850 BACN 10 1.69 0.00418 1.69 0.00418 816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 820 ABCN 48150 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00418 1.69 0.00418 828 830 BACN	Fr	То	Coning.	(ft)	R	GMR	R	GMR		
806 808 BACN 32230 1.69 0.00418 1.69 0.00418 808 810 BCAN 5840 2.55 0.00452 2.55 0.00452 808 812 BACN 37500 1.69 0.00418 1.69 0.00418 812 814 BACN 29730 1.69 0.00418 1.69 0.00418 814 850 BACN 10 1.69 0.00418 1.69 0.00418 816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 820 822 ABCN 48150 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00418 1.69 0.00418 828 BACN 2040 1.69 0.00418 1.69 0.00418 832 858 BACN	800	802	BACN	2580	1.69	0.00418	1.69	0.00418		
808 810 BCAN 5840 2.55 0.00452 2.55 0.00452 808 812 BACN 37500 1.69 0.00418 1.69 0.00418 812 814 BACN 29730 1.69 0.00418 1.69 0.00418 814 850 BACN 10 1.69 0.00418 1.69 0.00418 816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 816 824 BACN 10210 1.69 0.00418 1.69 0.00418 818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 820 822 ABCN 3030 2.55 0.00452 2.55 0.00452 824 826 BACN 840 1.69 0.00418 1.69 0.00418 828 BACN 520 1.69 0.00418 1.69 0.00418 830 BACN 2020	802	806	BACN	1730	1.69	0.00418	1.69	0.00418		
808 812 BACN 37500 1.69 0.00418 1.69 0.00418 812 814 BACN 29730 1.69 0.00418 1.69 0.00418 814 850 BACN 10 1.69 0.00418 1.69 0.00418 816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 816 824 BACN 10210 1.69 0.00418 1.69 0.00418 818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 820 822 ABCN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00418 1.69 0.00418 828 BACN 20440 1.69 0.00418 1.69 0.00418 830 BACN 2020 1.69 0.00418 1.69 0.00418 832 858 BACN 2020 <td>806</td> <td>808</td> <td>BACN</td> <td>32230</td> <td>1.69</td> <td>0.00418</td> <td>1.69</td> <td>0.00418</td>	806	808	BACN	32230	1.69	0.00418	1.69	0.00418		
812 814 BACN 29730 1.69 0.00418 1.69 0.00418 814 850 BACN 10 1.69 0.00418 1.69 0.00418 816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 816 824 BACN 10210 1.69 0.00418 1.69 0.00418 818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 820 822 ABCN 13740 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00418 1.69 0.00418 828 BACN 20440 1.69 0.00418 1.69 0.00418 830 BACN 2020 1.69 0.00418 1.69 0.00418 832 888 BACN 100	808	810	BCAN	5840	2.55	0.00452	2.55	0.00452		
814 850 BACN 10 1.69 0.00418 1.69 0.00418 816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 816 824 BACN 10210 1.69 0.00418 1.69 0.00418 818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 820 822 ABCN 13740 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 840 1.69 0.00418 1.69 0.00418 828 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 BACN 520 1.69 0.00418 1.69 0.00418 832 888 BACN 100 1.69 0.00418 1.69 0.00418 834 860 BACN	808	812	BACN	37500	1.69	0.00418	1.69	0.00418		
816 818 ABCN 1710 2.55 0.00452 2.55 0.00452 816 824 BACN 10210 1.69 0.00418 1.69 0.00418 818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 820 822 ABCN 13740 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00418 1.69 0.00418 828 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 BACN 20440 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 888 BACN 2020 1.69 0.00418 1.69 0.00418 834 840 BACN <td>812</td> <td>814</td> <td>BACN</td> <td>29730</td> <td>1.69</td> <td>0.00418</td> <td>1.69</td> <td>0.00418</td>	812	814	BACN	29730	1.69	0.00418	1.69	0.00418		
816 824 BACN 10210 1.69 0.00418 1.69 0.00418 818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 820 822 ABCN 13740 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00418 1.69 0.00418 828 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 854 BACN 520 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 888 BACN 100 1.69 0.00418 1.69 0.00418 834 840 BACN 280 1.69 0.00418 1.69 0.00418 836 840	814	850	BACN	10	1.69	0.00418	1.69	0.00418		
818 820 ABCN 48150 2.55 0.00452 2.55 0.00452 820 822 ABCN 13740 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 828 BACN 840 1.69 0.00418 1.69 0.00418 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 854 BACN 520 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 280 1.69 0.00418 1.69 0.00418 844 BACN 360	816	818	ABCN	1710	2.55	0.00452	2.55	0.00452		
820 822 ABCN 13740 2.55 0.00452 2.55 0.00452 824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 826 BCAN 840 1.69 0.00418 1.69 0.00418 828 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 854 BACN 520 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 858 BACN 100 1.69 0.00418 1.69 0.00418 834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 842 844	816	824	BACN	10210	1.69	0.00418	1.69	0.00418		
824 826 BCAN 3030 2.55 0.00452 2.55 0.00452 824 828 BACN 840 1.69 0.00418 1.69 0.00418 828 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 854 BACN 520 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 858 BACN 100 1.69 0.00418 1.69 0.00418 834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 840 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 BACN 3640	818	820	ABCN	48150	2.55	0.00452	2.55	0.00452		
824 828 BACN 840 1.69 0.00418 1.69 0.00418 828 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 854 BACN 520 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 858 BACN 100 1.69 0.00418 1.69 0.00418 834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 836 842 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN	820	822	ABCN	13740	2.55	0.00452	2.55	0.00452		
828 830 BACN 20440 1.69 0.00418 1.69 0.00418 830 854 BACN 520 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 888 BACN 100 1.69 0.00418 1.69 0.00418 834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 836 862 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 BACN	824	826	BCAN	3030	2.55	0.00452	2.55	0.00452		
830 854 BACN 520 1.69 0.00418 1.69 0.00418 832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 858 BACN 100 1.69 0.00418 1.69 0.00418 832 888 BACN 100 1.69 0.00418 1.69 0.00418 834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 836 862 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 850 816 <	824	828	BACN	840	1.69	0.00418	1.69	0.00418		
832 858 BACN 4900 1.69 0.00418 1.69 0.00418 832 888 BACN 100 1.69 0.00418 1.69 0.00418 834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 836 862 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 8ACN 3640 1.69 0.00418 1.69 0.00418 846 8ACN 3640 1.69 0.00418 1.69 0.00418 850 816 BACN 310	828	830	BACN	20440	1.69	0.00418	1.69	0.00418		
832 888 BACN 100 1.69 0.00418 1.69 0.00418 834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 836 862 BACN 280 1.69 0.00418 1.69 0.00418 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 846 848 BACN 310 1.69 0.00418 1.69 0.00418 850 816 BACN	830	854	BACN	520	1.69	0.00418	1.69	0.00418		
834 860 BACN 2020 1.69 0.00418 1.69 0.00418 834 842 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 846 848 BACN 3640 1.69 0.00418 1.69 0.00418 850 816 BACN 310 1.69 0.00418 1.69 0.00418 854 856	832	858	BACN	4900	1.69	0.00418	1.69	0.00418		
834 842 BACN 280 1.69 0.00418 1.69 0.00418 836 840 BACN 860 1.69 0.00418 1.69 0.00418 836 862 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 844 846 BACN 530 1.69 0.00418 1.69 0.00418 846 848 BACN 530 1.69 0.00418 1.69 0.00418 850 816 BACN 310 1.69 0.00418 1.69 0.00418 852 BACN 2330 2.55 0.00452 2.55 0.00452 854 852 BACN <	832	888	BACN	100	1.69	0.00418	1.69	0.00418		
836 840 BACN 860 1.69 0.00418 1.69 0.00418 836 862 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 844 846 BACN 530 1.69 0.00418 1.69 0.00418 846 848 BACN 530 1.69 0.00418 1.69 0.00418 850 816 BACN 310 1.69 0.00418 1.69 0.00418 852 BACN 10 1.69 0.00418 1.69 0.00418 854 856 BCAN 2330 2.55 0.00452 2.55 0.00452 858 864 ABCN <	834	860	BACN	2020	1.69	0.00418	1.69	0.00418		
836 862 BACN 280 1.69 0.00418 1.69 0.00418 842 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 846 BACN 1350 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 846 848 BACN 530 1.69 0.00418 1.69 0.00418 850 816 BACN 310 1.69 0.00418 1.69 0.00418 852 832 BACN 10 1.69 0.00418 1.69 0.00418 854 856 BCAN 2330 2.55 0.00452 2.55 0.00452 854 852 BACN 36830 1.69 0.00418 1.69 0.00418 858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834	834	842	BACN	280	1.69	0.00418	1.69	0.00418		
842 844 BACN 1350 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 844 846 BACN 3640 1.69 0.00418 1.69 0.00418 846 848 BACN 530 1.69 0.00418 1.69 0.00418 850 816 BACN 310 1.69 0.00418 1.69 0.00418 852 832 BACN 10 1.69 0.00418 1.69 0.00418 854 856 BCAN 2330 2.55 0.00452 2.55 0.00452 854 852 BACN 36830 1.69 0.00418 1.69 0.00418 858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836	836	840	BACN	860	1.69	0.00418	1.69	0.00418		
844 846 BACN 3640 1.69 0.00418 1.69 0.00418 846 848 BACN 530 1.69 0.00418 1.69 0.00418 850 816 BACN 310 1.69 0.00418 1.69 0.00418 852 832 BACN 310 1.69 0.00418 1.69 0.00418 854 856 BCAN 2330 2.55 0.00452 2.55 0.00452 854 852 BACN 36830 1.69 0.00418 1.69 0.00418 858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	836	862	BACN	280	1.69	0.00418	1.69	0.00418		
846 848 BACN 530 1.69 0.00418 1.69 0.00418 850 816 BACN 310 1.69 0.00418 1.69 0.00418 852 832 BACN 10 1.69 0.00418 1.69 0.00418 854 856 BCAN 2330 2.55 0.00452 2.55 0.00452 854 852 BACN 36830 1.69 0.00418 1.69 0.00418 858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	842	844	BACN	1350	1.69	0.00418	1.69	0.00418		
850 816 BACN 310 1.69 0.00418 1.69 0.00418 852 832 BACN 10 1.69 0.00418 1.69 0.00418 854 856 BCAN 2330 2.55 0.00452 2.55 0.00452 854 856 BCAN 36830 1.69 0.00418 1.69 0.00418 858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	844	846	BACN	3640	1.69	0.00418	1.69	0.00418		
852 832 BACN 10 1.69 0.00418 1.69 0.00418 854 856 BCAN 2330 2.55 0.00452 2.55 0.00452 854 852 BACN 36830 1.69 0.00418 1.69 0.00418 858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	846	848	BACN	530	1.69	0.00418	1.69	0.00418		
854 856 BCAN 2330 2.55 0.00452 2.55 0.00452 854 852 BACN 36830 1.69 0.00418 1.69 0.00418 858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	850	816	BACN	310	1.69	0.00418	1.69	0.00418		
854 852 BACN 36830 1.69 0.00418 1.69 0.00418 858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	852	832	BACN	10	1.69	0.00418	1.69	0.00418		
858 864 ABCN 1620 2.55 0.00452 2.55 0.00452 858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	854	856	BCAN	23330	2.55	0.00452	2.55	0.00452		
858 834 BACN 5830 1.69 0.00418 1.69 0.00418 860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	854	852	BACN	36830	1.69	0.00418	1.69	0.00418		
860 836 BACN 2680 1.69 0.00418 1.69 0.00418 862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	858	864	ABCN	1620	2.55	0.00452	2.55	0.00452		
862 838 ACBN 4860 1.69 0.00418 1.69 0.00418	858	834	BACN	5830	1.69	0.00418	1.69	0.00418		
	860	836	BACN	2680	1.69	0.00418	1.69	0.00418		
000 000 DACN 10500 110 000440 110 000440	862	838	ACBN	4860	1.69	0.00418	1.69	0.00418		
888 890 BACN 10560 1.12 0.00446 1.12 0.00446	888	890	BACN	10560	1.12	0.00446	1.12	0.00446		

Fig. 4. The IEEE 34-bus system used for simulation

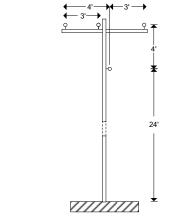


Fig. 5. Overhead line spacing for the IEEE 34-bus system

Fig. 5 shows the spacing distances between the phase conductors and the neutral conductor. The line configuration is given in Table 2 (3^{rd} column) indicating that the phase conductors are sequentially placed starting from the left side position.

Simulation Results

The system is run using the algorithm presented in Fig. 3. The simulation is coded using Matlab version 7.0 (R14). For the system of Fig.4, the three-phase power flow calculation takes 5 iterations to converge. This iteration number is fairly small indicating that the algorithm is robust for unbalance power flow calculation. The results of simulation including magnitude and angle of voltage at every phase are given in Table 3. The simulation also indicates the real and reactive power losses of 8.2 kW and 3.4 kVAr, respectively.

Table 3. Simulation Results of The IEEE 34-Bus Unbalance System

					· · · · · · · · · · · · · · · · · · ·		
bus	Volt at phase c		Volt at phase c		Volt at phase c		
no	mag	Angle	mag	Angle	mag	Angle	
800	100	0.00	100	-120.00	100	120.00	
802	99.93	-0.01	99.94	-120.01	99.94	119.99	
806	99.88	-0.02	99.89	-120.02	99.90	119.98	
808	99.01	-0.22	99.19	-120.17	99.17	119.80	
810	99.01	-0.22	99.18	-120.18	99.17	119.80	
812	97.99	-0.45	98.38	-120.35	98.35	119.58	
814	97.18	-0.64	97.75	-120.49	97.70	119.41	
816	97.17	-0.64	97.74	-120.49	97.69	119.41	
818	97.14	-0.64	97.74	-120.49	97.69	119.41	
820	96.32	-0.66	97.84	-120.49	97.66	119.49	
822	96.11	-0.67	97.88	-120.49	97.65	119.52	
824	97.02	-0.69	97.50	-120.54	97.47	119.33	
826	97.02	-0.69	97.49	-120.54	97.48	119.33	
828	97.01	-0.69	97.48	-120.54	97.46	119.32	
830	96.72	-0.81	97.08	-120.63	97.01	119.17	
832	96.20	-1.02	96.36	-120.79	96.19	118.88	
834	96.07	-1.08	96.17	-120.84	95.97	118.80	
836	96.05	-1.08	96.15	-120.84	95.94	118.80	
838	96.04	-1.08	96.14	-120.84	95.94	118.80	
840	96.05	-1.08	96.15	-120.84	95.94	118.80	
842	96.07	-1.08	96.17	-120.85	95.97	118.80	
844	96.07	-1.09	96.16	-120.86	95.96	118.79	
846	96.08	-1.11	96.15	-120.87	95.97	118.77	
848	96.08	-1.11	96.16	-120.87	95.97	118.77	
850	97.18	-0.64	97.75	-120.49	97.70	119.41	
852	96.20	-1.02	96.36	-120.79	96.19	118.89	
854	96.71	-0.81	97.07	-120.63	97.00	119.16	
856	96.71	-0.81	97.06	-120.63	97.00	119.16	
858	96.14	-1.05	96.27	-120.82	96.09	118.85	
860	96.06	-1.08	96.16	-120.84	95.95	118.80	
862	96.05	-1.08	96.15	-120.84	95.94	118.80	
864	96.14	-1.05	96.27	-120.82	96.09	118.85	
888	96.20	-1.02	96.36	-120.79	96.19	118.89	
890	96.18	-1.02	96.34	-120.79	96.17	118.89	

Conclusion

Three-phase power flow for an unbalance distribution system is carried out using Forward-Backward Propagation Technique. The IEEE 34-bus unbalance system is used for simulation. The main conclusions are:

• The implemented algorithm works directly on the simulated system and, therefore, there is no need to transform the system into the symmetrical components as well as to decouple the three-phase into individual phases;

• The algorithm is robust for the radial unbalance distribution system with good convergence characteristic.

Reference:

- Chen, T. H., M. S. Chen, et al, (1991), "Distribution system power flow analysis-a rigid approach", <u>IEEE</u> Transactions on Power Delivery, 6(3): 1146-1152
- Cheng, C. S. and D. Shirmohammadi (1995), "A three-phase power flow method for real-time distribution system analysis", *IEEE Transactions on Power Systems*, **10**(2): 671-679
- da Costa, V. M., M. L. de Oliveira, et al., (2007), "Developments in the analysis of unbalanced three-phase power flow solutions", *International Journal of Electrical Power & Energy Systems*, **29**(2): 175-182

Garcia, P. A. N., J. L. R. Pereira, et al., (2000), "Three-phase power flow calculations using the current injection method", *IEEE Transactions on Power Systems*, **15**(2): 508-514

Kersting, W. H., (1991), "Radial distribution test feeders", IEEE Transactions on Power Systems, 6(3): 975-985

- Kersting, W. H. and W. H. Phillips, (1995), "Distribution feeder line models", *IEEE Transactions on Industry* Applications, **31**(4): 715-720
- Lin, W.-M. and J.-H. Teng, (2000), "Three-phase distribution network fast-decoupled power flow solutions", International Journal of Electrical Power & Energy Systems, 22(5): 375-380
- Lo, K. L. and C. Zhang, (1993), "Decomposed three-phase power flow solution using the sequence component frame", *IEE Proceedings-Generation, Transmission and Distribution*, **140**(3): 181-188
- Mayordomo, J. G., M. Izzeddine, et al., (2002), "Compact and flexible three-phase power flow based on a full Newton formulation", *IEE Proceedings-Generation, Transmission and Distribution*, **149**(2): 225-232
- Teng, J.-H., (2002), "A modified Gauss-Seidel algorithm of three-phase power flow analysis in distribution networks", *International Journal of Electrical Power & Energy Systems*, **24**(2): 97-102
- Vieira, J. C. M., Jr., W. Freitas, et al., (2004), "Phase-decoupled method for three-phase power-flow analysis of unbalanced distribution systems", *IEE Proceedings-Generation, Transmission and Distribution*, 151(5): 568-574
- Zhang, X. P. and H. Chen, (1994), "Asymmetrical three-phase load-flow study based on symmetrical component theory", *IEE Proceedings-Generation, Transmission and Distribution*, **141**(3): 248-252