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Abstract — System or process identification is the field of 

mathematical modeling of systems (processes) from test or 

experimental data. Most of the existing works on process 

modeling were based on LTI (Linier Time Invariant) model. This 

paper presents the Linear Parameter Varying (LPV) model 

identification for primary reforming process in ammonia plant to 

cover changes in process operating conditions, such as start-up, 

normal operation and shut-down. Recursive Least Square (RLS) 

based algorithm with parameter function pk=sin(0.0001*k) is 

employed in the identification process. Data needed for 

identification are taken from DCS historian data of the primary 

reformer process. The identification result is simulated and 

validated with the measured data. The process models obtained 

by this technique show reasonably fit with the mean value of 

90.42 %. The process models are implemented on a simulation 

engine of Operator Training Simulator (OTS) using Scilab/Scicos 

software tools. Simulation result shows that the indicators of 

process variable mostly accepted. The mean value of deviations 

between process variables of simulated models and historian data 

are 10%, 20%, and 5%, for operation rate 40%, 65%, and 

100%. 
 

Key words - Identification, Linear Parameter Varying (LPV) model, 

Primary Reformer, Operator Training Simulator (OTS). 

 

I. INTRODUCTION 

System or process identification is the field of 

mathematical modelling of systems (processes) from test or 

experimental data [1]. Process model obtained from 

identification process can be used for process simulation, 

analysis and design of control systems, design of safety 

systems.  Most of the existing works on process simulation is 

based on LTI, which is satisfactory for a number of systems. 

However, system identification based on LTI model appears 

to be of limited value when the plant operating conditions 

significantly varies. One of the effective methods to handle 

varying operating conditions in the plant is to employ Linear 

Parameter Varying (LPV) model. LPV constitutes linear 

dynamic systems whose state space matrices depend on 

parameters which may vary in time. Such a system was 

recently studied within the context of gain-scheduling control 

analysis and design which provides stability and performance 

guarantee along the trajectory of the varying parameters. More 

recently, some results of LTI system identification was 

extended to LPV model. 

System identification of primary reforming process in an 

ammonia plant was recently studied for simulation purpose by 

the first author in [2], based on LTI model. Simulation result 

shows that the model obtained was satisfactory for reforming 

process operation on normal operating condition. Simulation 

for start-up operating condition has not been successfully  

conducted as high overshoot step responses appears from 

several process models which exceeds maximum operation 

limit, prohibiting the simulation to proceed. A careful 

observation of reforming process reveals that some 

nonlinearity occurs in the system. 

The term Linear Parameter Varying (LPV) system was 

originally coined by Shamma dan Athans [3] within the 

context of gain-scheduling design. LPV model appears in 

many modeling and control problems, such as aerospace or 

vehicle system applications [4], stall and surge control of jet 

engine [5] and flutter suppression [6]. As far the authors 

concern, application of LPV model identification in reforming 

process has not been studied. 

This paper presents the LPV model identification for 

reforming process in an ammonia plant based on historical 

data recorded in a distributed control system (DCS). The LPV 

model is chosen based on the fact that ammonia plant is 

operated along several operating conditions (start up, normal, 

shutdown, and emergency operation) and that in every 

operating conditions there are parameter changes. LPV 

identification process is based on Recursive Least Square 

(RLS), a technique originally developed by Bamieh [7]. 

The rest of this paper is outlined as follows. In Section 2, 

Primary Reforming in an ammonia process plant is described. 

In Section 3, LPV model identification algorithm is presented. 

In Section 4, results of LPV identification for Primary 

Reformer are presented. Implementation result of LPV model 

on simulation engine of Operator Training Simulator (OTS) is 

described in Section 5. Finally, conclusion is drawn in Section 

6. 

II. PRIMARY REFORMING PROCESS 

 

This section gives an overview of ammonia process shown 

in Figure 1. The ammonia process plant from which modelling 

is performed is located at PT Pupuk Kaltim, Kalimantan 

Island. In this process plant, Ammonia is produced from the 

reaction of hydrogen (H2) and nitrogen (N2) in the ratio of 3:1. 
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Hydrogen is produced by steam reforming of desulphurized  

natural process gas in the primary reformer section, whereas  

N2 is obtained by introducing compressed air into secondary  

reformer, an autothermal reactor used to further reform the  

remaining natural process gas. 

 

 
Fig. 1: Ammonia process 

 

The resulting raw synthesis gas mainly contains H2, N2, 

carbon monoxide (CO), carbon dioxide (CO2) and steam. CO 

is converted to CO2 and the additional H2 is produced by 

water gas shift reaction. In the CO2 Removal section, CO2 is 

removed from the gas and then sent to Urea Plant. The 

remaining CO and CO2 are converted into methane (CH4) by 

reacting them with H2 in the Methanation section. The 

synthesis gas, mostly contains H2 and N2, is then fed into the 

Ammonia Synthesis Loop section and converted into 

ammonia before being sent to Urea Plant. 

In the primary reformer section, the natural gas is steam 

reformed. Heat needed for the reaction is supplied in the form 

of radiant heat from firing of natural fuel gas. Sensible flue 

gas heat flow along convection section is used to heat several 

media in the waste heat recovery [8]. 

The primary reformer section consists of: 

 144 catalyst tube in the two radiant section and side firing 

burner systems. Firing burner control system is shown in 

Figure 2.  

 Waste Heat recovery System (WHS) utilizes sensible flue 

gas heat produced from primary reformer radiant section 

in order to heat various coils by convective heat exchange. 

The system shown in Figure 3 involves: 

1. Mixed feed pre-heater coil used to heat hydrocarbon 

and steam before fed into catalyst tube. 

2. Process air heater coil used to heat compressed air 

before being fed into secondary reformer section. 

3. Super heater steam coil used to heat steam to produce 

superheated steam. 

4. Feed Gas pre-heater coil used to heat natural gas 

before being fed into desulphurization section. 

5. Boiler Feed Water pre-heater coil used to heat boiler 

feed water. 

 

 
Fig. 2: Firing Burner Control System 

 

 
Fig. 3: Waste heat recovery system 

 

III. LPV MODEL IDENTIFICATION 

 

Linear Parameter Varying (LPV) system is a special class 

of nonlinear system [9], where the system coefficients are 

rational function of a parameter. In LPV model, system 

matrices depends on one or more time-varying parameters and 

hence represents a family of LTV systems (one for each 

parameter trajectory) [10]. 

A discrete time LPV systems represented in the state space 

form as: 

 

)())(()())(()(

)())(()())(()1(

tutpDtxtpCty

tutpBtxtpAtx




  (1) 

 

LPV systems model may also be characterized in the form 

of [7]: 

 

)(),()(),( kupBkypA      (2) 
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where u is input, y is output,   is delay operator, i.e. 

)1(:)(  kyy k , and 
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1 ba nnn  is the number of parametric functions to be 

identified. Assume that the varying parameter p is a function 

of discrete time ( )(kpp   ). 

Parameter function {
ia }, {

ib } are assumed to be a linear 

combinations of a set of known fixed basis functions {f1, ..., 

fN}. 
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where the constants k

ia , l

ib  are real numbers. Thus any 

particular model is completely characterized by the real 

numbers { k

ia }, and { l

ib }. The goal of a parametric 

identification scheme in this paper is then to find these 

constants from process measurement data. 

For this general framework, many choices are possible for 

the function )(1 pf . In particular if we consider a polynomial 

dependence, then the function   are simply powers of p 

 
1

1 )(  lppf  Nl ,...,1    (7) 

 

In this case the parameter functions are rewritten as 
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In recursive least mean square (RLS) identification 

algorithm it is required to minimize errors between 

measurement variables and estimation variables which is 

known as loss function 
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where Θ  is n x N matrix that contains coefficients to be 

identified: 
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and ),( Θk , called  prediction error, is defined as 

 

kkyk ΨΘΘ ,),(     (12) 

 

where yk is measurement data (output of the system) and 

kΨΘ,  is estimation output. An extended regressor Ψ, is 

built by past I/O data and parameter trajectories, 
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In this paper, 
kΘ̂  is parameter coefficients matrix which is 

estimated at time k. Following RLS algorithm and under 

appropriate assumption [7], identification algorithm is given 

by: 
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where P is covariance matrix expressed in recursive form in 

Equation (17). Convergence condition of the identification 

algorithm is attained if 
0Θ  is the true value, thus 

0
ˆlim ΘΘ 


k

k
     (18) 

 

IV. LPV IDENTIFICATION RESULTS 

 

In this section, some results of LPV identification for 

Primary Reformer process is presented. Various measured 

input-output signals required  for  identification  process  are  

taken  from  DCS historian  data  of  the  ammonia  process  
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plant  during  plant operations. Particular experimentations 

with some excitation signals are not performed as it will 

disturb the plant operation process. Data needed for 

identification process is taken from DCS historian data from 

February 15, 2006 to March 3, 2006 with sampling time of 1 

minutes. All operating conditions of the process (start up, 

normal, and shut down) are covered in the duration considered. 

Plots of a sample of historical input signals (TI2010PNT and 

FIC2001MEAS) are shown in Fig 4. In the subsequent 

discussions, Prefix T, P and F in various signals identification 

number represents temperature, pressure and flow, 

respectively. 

Pre-processing of measured data involves data merging, 

normalization (offset correction) and scaling. Data merging of 

some measured data is required because, due to limited 

available storage in DCS, historian data for several operating 

conditions are not provided in time-successive manner, but 

instead in time-truncated way. Plots of a sample of data pre-

processing results (TI2010PNT and FIC2001MEAS) are 

shown in Fig 5. 

 
Fig. 4: Sample of measured data: temperature TI2010PNT (upper) and flow 

FIC2001MEAS (lower) 

 

 
Fig. 5: Sample of measured data after data pre-processing: temperature 

TI2010PNT (upper) and flow FIC2001MEAS (lower) 

 

By examining the reformer diagrams and operation 

described in [8], it is known that Primary Reformer Section 

process is a multivariable process. All of process can be 

divided into several sub process, such as Firing Burner System, 

Primary Reformer, Mixing of Outlet Gas, and Waste Heat 

recovery System (WHS).  

In the following, we present LPV identification results for 

Firing Burner, Primary Reformer, and Mixing of Outlet Gas - 

the main subsystems of Primary Reformer. 

 

A. Firing Burner System 

Firing Burner System consists of 9 inputs (flows and 

pressures of natural gas fuel and number of activated burner) 

and 6 outputs (temperatures and pressures of primary reformer 

chamber) as shown in Figure 6. For modelling purpose, this 

MIMO system divided into 6 MISO system, based on number 

of output, where all input exist in all MISO system. Plot of 

some simulated LPV model (TI2024PNT and PIC2002 

MEAS), along with the corresponding measured data used for 

identification process is shown in Figure 7.a and Figure 7.b. 

For TI2024PNT, a best fit of 91.885 and loss function of 

0.0066 are obtained. For PIC2002MEAS, a best fit of 88.9707 

and loss function of 0.0122 are obtained. Mean best fit for all 

output is 85.2397. Note that estimated output predict the 

measured output very well. 

 

 
 

Fig. 6: Firing burner input-output 
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(b) 

Fig. 7: Actual/measured and predicted/simulated outputs of Firing Burner 
System, (a) TI2024PNT output, (b) PIC2002MEAS output 

 

The LPV model obtained is of the form (in MATLAB 

symbol): 

 

y1(k)=-A1p*y1(k-1)-A2p*y1(k-2) 

+B11p*u1(k-1)+B21p*u2(k-1)+B31p*u3(k-1) 

+B41p*u4(k-1)+B51p*u5(k-1)+B61p*u6(k-1) 

+B71p*u7(k-1)+B12p*u1(k-2)+B22p*u2(k-2) 

+B32p*u3(k-2)+B42p*u4(k-2)+B52p*u5(k-2) 

+B62p*u6(k-2)+B72p*u7(k-2); 

 

where 

 A1p = Theta1(1,:)*p; A2p = Theta1(2,:)*p; 

 B11p = Theta1(3,:)*p; B21p = Theta1(4,:)*p; 

 B31p = Theta1(5,:)*p; B41p = Theta1(6,:)*p; 

 B51p = Theta1(7,:)*p; B61p = Theta1(8,:)*p; 

 B71p = Theta1(9,:)*p; B12p = Theta1(10,:)*p; 

 B22p = Theta1(11,:)*p; B32p = Theta1(12,:)*p; 

 B42p = Theta1(13,:)*p; B52p = Theta1(14,:)*p; 

 B62p = Theta1(15,:)*p; B72p = Theta1(16,:)*p; 

 y1 = TI2024PNT; 

 u1…u7 = all input of firing burner 

 

and 

 p=[1; sin(0.0001*k); (sin(0.0001*k))^2]; 

 

Theta1 is 16x3 matrix representing identified parameters as 

shown below. 

Theta1 =[ 

   -0.7274   -0.0991   -0.0540 

   -0.2397    0.0770    0.0510 

    0.0051    0.0019    0.0021 

   -0.0015   -0.0026   -0.0004 

   -0.0016   -0.0041    0.0009 

    0.0284    0.0116    0.0069 

    0.0013   -0.0013   -0.0002 

    0.0056    0.0028   -0.0003 

    0.0191   -0.0042   -0.0013 

   -0.0053   -0.0056   -0.0036 

    0.0042    0.0006    0.0026 

   -0.0146   -0.0059   -0.0015 

   -0.0115   -0.0130   -0.0070 

    0.0004   -0.0014   -0.0001 

   -0.0088   -0.0001   -0.0007 

    0.0127   -0.0016    0.0007] 

 

The LPV model obtained is of the following form: 

 

y5(k)=-A1p*y5(k-1)-A2p*y5(k-2) 

+B11p*u1(k-1)+B21p*u2(k-1)+B31p*u3(k-1)       

+B41p*u4(k-1)+B51p*u5(k-1)+B61p*u6(k-1) 

+B71p*u7(k-1)+B12p*u1(k-2)+B22p*u2(k-2) 

+B32p*u3(k-2)+B42p*u4(k-2)+B52p*u5(k-2) 

+B62p*u6(k-2)+B72p*u7(k-2); 

 

where 

A1p = Theta5(1,:)*p; A2p = Theta5(2,:)*p; 

 B11p = Theta5(3,:)*p; B21p = Theta5(4,:)*p; 

 B31p = Theta5(5,:)*p; B41p = Theta5(6,:)*p; 

 B51p = Theta5(7,:)*p; B61p = Theta5(8,:)*p; 

 B71p = Theta5(9,:)*p; B12p = Theta5(10,:)*p; 

 B22p = Theta5(11,:)*p; B32p = Theta5(12,:)*p; 

 B42p = Theta5(13,:)*p; B52p = Theta5(14,:)*p; 

 B62p = Theta5(15,:)*p; B72p = Theta5(16,:)*p; 

 y5= PIC2002MEAS; 

 u1…u7 = all input of firing burner 

 

and 

p=[1; sin(0.0001*k); (sin(0.0001*k))^2]; 

 

Theta5 is 16x3 matrix representing identified parameters as 

shown below. 

Theta5 =[ 

   -0.8286   -0.0748   -0.0144 

   -0.1407    0.0617    0.0168 

   -0.0075   -0.0010   -0.0028 

    0.0030    0.0040    0.0041 
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   -0.0422   -0.0180   -0.0151 

   -0.0179    0.0046    0.0086 

   -0.0083   -0.0047   -0.0072 

   -0.1261   -0.0295   -0.0205 

    0.0114    0.0125    0.0088 

    0.0039    0.0076    0.0041 

   -0.0067   -0.0051   -0.0050 

    0.0312    0.0193    0.0138 

    0.0108   -0.0054   -0.0094 

    0.0039    0.0107    0.0080 

    0.1211    0.0324    0.0209 

   -0.0115   -0.0113   -0.0103] 

 

B. Primary Reformer (1-H-201) 

Primary Reformer consists of 11 inputs (flow, temperature, 

and pressure of steamed natural gas, and temperature of 

primary reformer chamber) and 9 outputs (temperature and 

pressure of the result of primary reforming process) as shown 

in Figure 8. Similar to Firing Burner system, this MIMO 

system divided into 9 MISO systems. Plot of a simulated LPV 

model (TI2027APNT), along with the corresponding 

measured data used for identification process is shown in 

Figure 9. A best fit of 90.6615 and loss function of 0.0087 are 

obtained. Mean best fit for all output of Primary Reformer (1-

H-201) is 94.2617. Note that estimated output predict the 

measured output very well. 

 

 
Fig. 8: Primary Reformer (1-H-201) input-output 
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Fig. 9: Actual/measured and predicted/simulated output of Primary Reformer 

(TI2027APNT output) 

 

The LPV model obtained takes the following form: 

 

y1(k)=-A1p*y1(k-1)-A2p*y1(k-2) 

+B11p*u1(k-1)+B21p*u2(k-1)+B31p*u3(k-1) 

+B41p*u4(k-1)+B51p*u5(k-1)+B61p*u6(k-1) 

+B71p*u7(k-1)+B81p*u8(k-1)+B91p*u9(k-1) 

+B101p*u10(k-1)+B111p*u11(k-1)+B12p*u1(k-2) 

+B22p*u2(k-2)+B32p*u3(k-2)+B42p*u4(k-2) 

+B52p*u5(k-2)+B62p*u6(k-2)+B72p*u7(k-2) 

+B82p*u8(k-2)+B92p*u9(k-2)+B102p*u10(k-2) 

+B112p*u11(k-2); 

 

C. Gas Mixing (1-H-201 Outlet) 

Mixing of Outlet Gas consists of 4 inputs (temperature of 

results of primary reforming process) and 1 output (mixed 

temperature of the result of primary reforming process) as 

shown in Figure 10. Plot of simulated LPV model, along with 

the corresponding measured data used for identification 

process is shown in Figure 11. A best fit of 90.6615 and loss 

function of 0.0087 are obtained. Note that estimated output 

predict the measured output very well.  

The model development procedure in this example can be 

used for the other sub-process of primary reformer section. 

The mean values of best fit for all sub-process is 90.42 % 

which are moderately accepted. 

 

 
Fig. 10: Gas Mixing(1-H-201 Outlet) input-output 
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Fig. 11: Actual/measured and predicted/simulated output of Gas Mixing 

(TI2028PNT output) 

 

The LPV model obtained takes the following form: 

y1(k)=-A1p*y1(k-1)-A2p*y1(k-2)+B11p*u1(k-1) 

+B21p*u2(k-1)+B31p*u3(k-1)+B41p*u4(k-1) 

+B12p*u1(k-2)+B22p*u2(k-2)+B32p*u3(k-2)  

+B42p*u4(k-2); 

 

Several remarks on varying parameter are in order. The 

varying parameter used in the identification process described 

above is sinusoidal function of sufficiently small frequency to 

obtain satisfying results. Although not shown, we noticed in 

our experiments that the use of higher frequencies tends to 

produce smaller best fit. It seems to the authors that such a 

result is due to the fact that the ammonia process is 

sufficiently slow. 

 

V. MODEL IMPLEMENTATION 

 

The process models are implemented on a simulation 

engine of Operator Training Simulator (OTS) using 

Scilab/Scicos software tools. Graphical User Interface (GUI) 

of OTS is developed using Wonderware InTouch
®
. A display 

of GUI is shown in Figure 12. The OTS dynamically 

simulated for start-up, normal, and normal shutdown training 

scenarios. Plot of some important process variable indicator 

(TI2016PNT, TI2028PNT, FIC2004MEAS, FIC2001MEAS 

and FIC2009MEAS) during these scenarios shown on Figure 

13, and Figure 14.  

 

 
Fig. 12: Graphical User Interface of OTS 

 

  
Fig. 13: Plot of some process variable indicator during start-up scenario, (a) 

Firing Burner activated, (b) steam/FIC2004MEAS is fed, (c) natural gas is fed, 

and (d) process air is fed. 

 

Simulation result shows that the indicators of process 

variable mostly accepted. The mean value of deviations 

between process variables of simulated models and historian 

data are 10%, 20%, and 5%, for operation rate 40%, 65%, and 

100%. 
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Figure 14: Plot of simulation result for normal shutdown scenario  

 

VI. CONCLUSION 

 

This paper presents the LPV model identification for 

primary reformer section of ammonia plant. In general, the 

models obtained by using the LPV model identification with 

Recursive Least Square (RLS) algorithm and parameter 

trajectory sequence )*0001.0sin( kpk  , show reasonably fit 

with the mean value of 90.42 %. This is satisfactory result for 

further work on the LPV control system application or Process 

Simulator. After implementation of process model on 

simulation engine of Operator Training Simulator (OTS), the 

mean value of deviations between process variables of 

simulated models and historian data are 10%, 20%, and 5%, 

for operation rate 40%, 65%, and 100%.  

The model development and implementation procedure in 

this paper can be used for the other sections of ammonia plant. 

For future works, the parameter function determination of 

LPV model has to be researched to produces more 

systematically determination. 
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