PERANCANGAN ULANG WHEELBARROW RODA TIGA YANG ERGONOMIS (Studi Kasus di UD Marsono, Gedong Kuning, Yogyakarta)

Agung Kristanto¹, Nurcipta Umbara²

1,2 Program Studi Teknik Industri Fakultas Teknologi Industri Universitas Ahmad Dahlan Yogyakarta *Email: agung.kristanto@ie.uad.ac.id

Abstrak

UD Marsono adalah salah satu industri yang bergerak di bidang pencetakan material bahanbahan bangunan seperti batako, konblok, dan paving yang berletak di Kota Yogyakarta. Dalam proses pengangkutan material atau produk jadi pasti tidak terlepas dari alat bantu yaitu Whellbarrow. Desain whellbarrow yang ada di UD Marsono saat ini dirasakan tidak ergonomis. Hal ini menyebabkan ketidaknyamanan pada pergelangan tangan, punggung, pinggang, jari tangan dan kaki. Pekerja dalam mengoperasikan wheelbarrow yang ada saat ini juga sering mengalami kecelakaan kerja rata-rata sebanyak 2,5 kali per bulan serta cepat merasa lelah karena mengeluarkan banyak energi sebanyak 4,45 Kcal/menit. Tujuan penelitian ini adalah merancang ulang wheelbarrow yang ergonomis untuk mengurangi kecelakaan kerja, mengurangi tingkat konsumsi energi, serta mengurangi keluhan ketidaknyamanan yang dirasakan operator. Data penelitian ini meliputi data keluhan pekerja, frekuensi kecelakaan kerja, denyut jantung, dan antropometri. Data keluhan pekerja dan frekuensi kecelakaan kerja diperoleh dari kuisioner. Data denyut jantung dan antropometri diperoleh dengan melakukan pengukuran langsung. Untuk menguji keandalan dan kesahihan data dilakukan pengujian statistik meliputi pengujian normalitas, pengujian keseragaman data, dan pengujian kecukupan data. Pada penelitian menggunakan software SolidWorks untuk mendesain wheelbarrow. Perancangan wheelbarrow yang baru mampu menghilangkan 100% keluhan ketidaknyamanan yang dirasakan oleh pekerja yaitu pada bagian tubuh pergelangan tangan, punggung, pinggang, jari-jari tangan, dan kaki. Tingkat kecelakaan kerja juga mengalami penurunan sebesar 93% dari semula rata-rata 2,5 kali perbulan menjadi 0,16 kali perbulan serta penurunan tingkat konsumsi energi sebesar 26% dari semula 4,45 Kcal/menit menjadi 3,27 Kcal/menit.

Kata kunci : Whellbarrow, Ergonomi, Antropometri, konsumsi energi, Alat dorong manual

1. PENDAHULUAN

Penelitian ini dilakukan pada stasiun kerja proses pengangkutan pada perusahaan UD Marsono. Perusahaan ini bergerak dalam bidang percetakan material bahan-bahan bangunan seperti konblok, batako, paving dan bis beton. Whellbarrow adalah grobak kecil yang berfungsi atau yang digunakan untuk mengangkut material-material bahan bangunan.

Beberapa masalah yang dihadapi di UD Marsono adalah proses pengangkutan yang memerlukan energi yang besar karena Whellbarrow tdak ergonomis. Kesulitan yang dihadapi operator adalah tidak seimbangnya Whellbarrow saat digunakan karena roda Cuma ada satu. Selain itu membungkuknya operator saat mengangkat Whellbarrow, hal itu disebabkan kemudi terlalu kebawah. Setang kemudi terlepas dari genggaman karena karet berukuran kecil dan licin. Gambar posisi kerja dapat dilihat pada gambar 1 berikut:

Gambar 1. Posisi Kerja Proses Pengangkutan Sebelum Perancangan

Keterangan gambar 1:

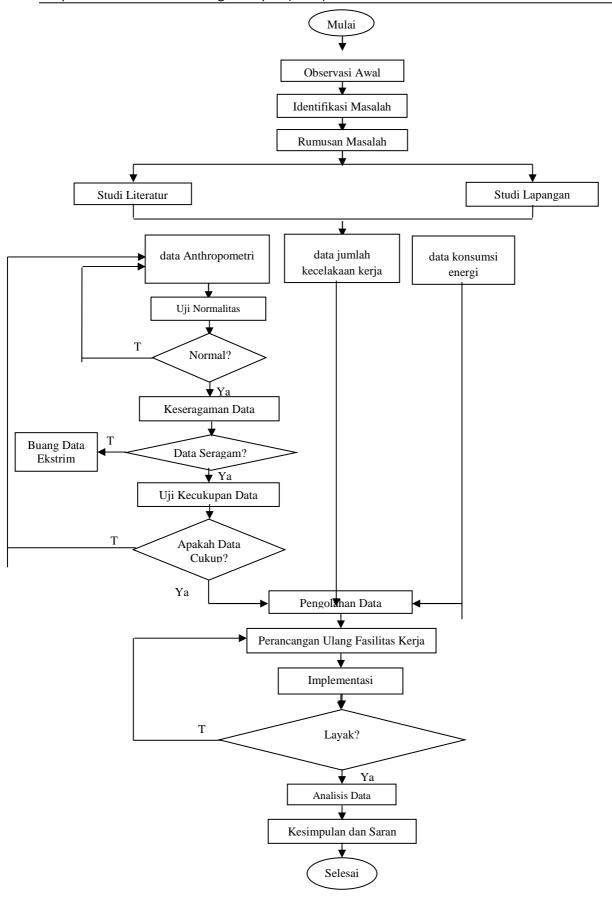
- P1. Punggung yang membungkuk mengakibatkan cepat lelah dan pegal
- P2. Pundak membungkuk kebawah mengakibatkan cepat lelah dan pegal.
- P3. Posisi genggaman tangan terlalu kecil sehingga mengakibatkan whellbarrow terlepas dan jari-jari tangan terkilir.

Dari gambar 1 memperlihatkan bahwa dengan adanya alat yang tidak mendukung hal tersebut dapat menimbulkan ketidaknyamanan seperti pegal, terkilir pada punngung, pinggang dan tangan. Dengan fasilitas kerja yang sekarang terjadi kecelakaan kerja sebanyak 2,5 x perbulan, adanya pengeluaran konsumsi energi yang cukup besar sebanyak 4,46 Kcal/menit dan Adanya ketidaknyamanan yang dirasakan oleh operator.

Dari uraian permasalahan maka perlu dilakukan penelitian yang bertujuan untuk memperbaiki posisi kerja operator pada bagian pengangkutan.

1.1 Tinjauan Literatur

Mirta Widia, Mia Monasari, Vera Methalina Afma, Taufik Azali, melakukan penelitian pada tahun 2006 jurusan Teknik Industri, Universitas Andalas, Padang dengan judul "Rancang Ulang Whellbarrow yang Ergonomis dan Ekonomis". Objek penelitian ini adalah Perancangan wheelbarrow dilakukan mengingat kegunaannya yang sangat dibutuhkan untuk menunjang aktivitas pembangunan sarana fisik. Selain itu, pada penggunaan wheelbarrow ditemui adanya keluhan pada para pengguna, diantaranya handlenya yang keras yang dapat menimbulkan cedera. Maka dilakukanlah perancangan ulang untuk yang lebih ergonomis.


Penelitian Penelitian yang dilakukan oleh Agus Risdiyanto mahasiswa jurusan Teknik Industri Universitas Ahmad Dahlan Tahun 2011 dengan judul "Perbaikan Posisi Kerja Pengrajinan Dengan Perancangan Ulang Alat Pemipih Enceng Gondok yang Ergonomis Untuk Minimalisasi Tingkat Kelelahan Operator dan meningkatkan Produktivitas" Objek penelitian ini dilakukan di Luthfi Craft, di Dusun Piring 2 Murtigading, Sanden, Bantul, Yogyakarta. Dimana penelitian ini melakukan perancangan mesin pemipih enceng gondok guna mengurangi pengeluaran konsumsi energi dan meningkatkan produktivitas kerja.

Penelitian yang dilakukan oleh Daryono mahasiswa jurusan Teknik Industri Universitas GunadarmaTahun 2010 dengan judul "Perancangan Gergaji Logam Dan Peta Kerja Untuk Pengurangan Keluhan Fisik Di Bengkel Las Sejati Mulia". Tujuan penelitian ini adalah untuk mengetahui keluhan fisik yang ditimbulkan dari penggunaan gergaji logam yang digunakan saat ini dan membandingkan waktu memotong logam dengan menggunakan gergaji logam manual dengan yang baru.

Penelitian yang dilakukan sekarang adalah melakukan Perancangan Ulang Whellbarrow Roda Tiga Dengan Pendekatan Data Antropometri untuk memberikan Kenyamanan bagi Pekerja, dimana proses pembubutan Whellbarrow didesain berdasarkan dimensi/ukuran tubuh operator. Whellbarrow yang akan dirancang digunakan untuk membandingkan tingkat kenyamanan operator ketika sedang bekerja, sehingga nantinya Whellbarrow yang baru bisa memberikan kenyamanan.

2. METODE PENELITIAN

Penelitian ini dilakukan pada UD Marsono, Gedong Kuning, Yogyakarta, Objek penelitian adalah fasilitas kerja yaitu Whellbarrow, adapun *flowchart* penyelesaian masalah sebagai berikut :

Gambar 2. Flowchart Penelitian

3. HASIL DAN PEMBAHASAN

3.1. Pengumpulan Data Sebelum Perancangan

Data yang dikumpulkan sebelum perancangan adalah data kecelakaan kerja, data ketidaknyamanan operator, data denyut jantung, dan data antropometri. Adapun data sebelum perancangan adalah sebagai berikut :

Tabel 1. Data Kecelakaan Kerja Sebelum Perancangan

Tuber 1. 1	Tuber 1. Data Receiukaan Rerja Beberam 1 erancangan									
No	Nama	Jenis	Jumlah kecelakaan							
INO	Ivailia	Kecelakaan	kerja							
1	Miftakul Huda	Terkilir	2							
2	Tumijo	Terkilir	2							
3	Pramono	Terkilir	2							
4	Nur Huda	Terkilir	3							
5	Haryono	Terkilir	2							
6	Warno Utomo	Terkilir	4							
	Jumlah		15							
	Rata-rata		2,5							

Setelah diperoleh data kecelakaan kerja diperoleh maka selanjutnya yaitu data keluhan operator sebagai berikut :

Tabel 2. Data Ketidaknyamanan Operator

Tabel 2. Data Ketidaknyamanan Operator								
			Jawaban K	uisoner				
No	Nama	Jenis Keluhan	Tidak nyaman	Nyaman				
1	Miftakhul Huda	Pergelangan telapak tangan Punggung Pinggang	✓ ✓ ✓	√				
2	Nur Huda	Jari tangan Kaki Pergelangan telapak tangan Punggung Pinggang Jari tangan Kaki	∨ ✓ ✓ ✓ ✓ ✓					
3	Tumijo	Pergelangan telapak tangan Punggung Pinggang Jari tangan Kaki						
4	Pramono	Pergelangan telapak tangan Punggung Pinggang Jari tangan Kaki	✓ ✓ ✓					
5	Warno Utomo	Pergelangan telapak tangan	✓					

		Punggung	✓	
		Pinggang	\checkmark	
		Jari tangan	✓	
		Kaki	✓	
		Pergelangan	✓	
		telapak tangan		
6	Haryono	Punggung	✓	
U	Trai yono	Pinggang	✓	
		Jari tangan	\checkmark	
		Kaki		

Selanjutnya yaitu data denyut jantung sebelum perancagan, adapun datanya sebagai berikut:

Tabel 3. Data Denyut Jantung

Tabel 3. Data Denyut Jantung									
	Denyut Jantu	ung (Pulse/menit)		Denyut Jantui	ng (Pulse/menit)				
No	Sebelum	Sesudah	No	Sebelum	Sesudah				
	bekerja	bekerja		bekerja	bekerja				
1	75	96	16	75	95				
2	76	97	17	77	96				
3	75	95	18	77	96				
4	76	96	19	75	95				
5	76	96	20	76	98				
6	75	97	21	77	97				
7	76	98	22	78	98				
8	77	98	23	76	96				
9	75	96	24	75	96				
10	77	97	25	75	98				
11	78	98	26	78	95				
12	77	97	27	76	96				
13	75	95	28	75	96				
14	77	96	29	75	97				
15	74	97	30	78	97				
	Jui	mlah		2282	2895				
	Rata	a-rata		76	96,50				

Setelah diperoleh data waktu proses maka selanjutnya yaitu data antropometri, berikut data yang dibutuhkan dalam proses perancangan alat baru :

Table 4. Data Antropometri

No	Nama	Dat	Data Antropometri		- No	Nama		Data Antropometri			
NO	Nama	Usia	Lb	Jt	Dgt	- 110	Ivailia	Usia	Lb	Jt	Dgt
1	Haryono	42	40	60	2.1	16	Yun	43	41	65	2.5
2	Pramono	43	40	62	2.3	17	Suryadi	50	37	62	2.5
3	Nur Huda	41	42	63	2.3	18	Sungatno	42	40	63	2.1
4	Suryanto	47	48	67	2.8	19	Trikoyohadi	50	48	63	2.5
5	Manuto	45	41	64	2.5	20	Kuswanto	41	47	65	2.4
6	Santoso	43	42	65	2.6	21	Muh. M	46	44	72	2.8
7	Robertus	42	43	65	2.5	22	Teguh. S	48	40	64	2.4
8	Sukirno	41	43	72	2.8	23	Susilo	48	46	70	2.7
9	Sudiono	47	46	67	2.7	24	Eko	45	42	71	2.7
10	Sukiran	46	42	63	2.5	25	Ganjar S	50	47	69	2.6

11	Agus S	47	48	65	2.5	26	Gunawan	42	43	65	2.4
12	Rusmino	48	48	63	2.4	27	Subur. W	43	40	65	2.3
13	Suhargono	50	45	62	2.4	28	Sunaryo	41	48	66	2.6
14	Hariyanto	43	49	63	2.5	29	Roy	45	44	70	2.5
15	Paryadi	42	40	63	2.3	30	Sudarto	44	38	71	2.2
Jumlah								1301	1965	74.40	
Rata-rata								43.37	65.50	2,48	

3.2. Pengolahan Data Sebelum Perancangan

- a. Pengolahan Data Antropometri
 - 1) Pengujian Data Antropometri

Tabel 5. Hasil Pengujian Data Antropometri

Data	N	Sig.	Sig. A		Uji kecukupan dan Keseragaman data					
		Hit		\overline{X}	σ	BKA	BKB	N	N'	Keterangan $(N' < N)$
Lb	30	0,789	0,05	43,3 7	3,49	50,34	36,3 9	30	10,01	Data Cukup
Jt	30	0,086	0,05	65,5 0	3,32	72,14	58,8 6	30	3,97	Data Cukup
Dgt	30	0,445	0,05	2,48	0,19	2,86	2,10	30	8,91	Data Cukup

2) Pengujian Data Denyut Jantung Sebelum Perancangan

Tabel 6. Hasil Pengujian Data Denyut Jantung

Pengukuran	N	Sig. Hit	Sig. α	X	σ	BKA	BKB	N	N'	Keterangan (N' <n)< th=""></n)<>
Denyut Jantung	30	0,097	0,05	76	1,15	78,35	73,78	30	0,35	Cukup
Sebelum Bekerja										
Denyut Jantung	30	0,100	0,05	96,50	1,01	98,52	94,48	30	0,17	Cukup
Setelah Bekerja										

b. Proses Perancangan Mesin

 Penentuan Ukuran Alat Yang Akan Dirancang Setelah perhitungan percentile didapat maka tahap selanjutnya menentukan dimensi alat, adapun data dimensi alat sebagai berikut:

Tabel 7. Dimensi Alat yang Diukur

No	Bagian Rancangan Whellbarrow	Ukuran (cm)
1	Tinggi Setang	66
2	Lebar Setang	49
3	Besar Pegangan Setang	3

2) Desain Produk Yang akan Dirancang

Gambar 3. Rancangan Whellbarrow

Tabel 8. Total Pembuatan Alat Baru

	0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
No	Jenis Biaya	Total
1	Biaya bahan baku	Rp. 987.500,-
2	Biaya Jasa	Rp. 235.000,-
	Jumlah	Rp. 1.222.500,-

3.3. Hasil Pengolahan Data Setelah Perancangan

a. Data Kecelakaan Kerja

Tabel 9. Hasil Perbandingan Data Kecelakaan Kerja Sebelum dan Setelah Perancangan

		Jenis	Jumlah kecelakaan kerja			
No	Nama	Kecelakaan	Sebelum	Sesudah		
			Perancangan	Perancangan		
1	Miftakul Huda	Terkilir	2	0		
2	Tumijo	Terkilir	2	0		
3	Pramono	Terkilir	2	0		
4	Nur Huda	Terkilir	3	0		
5	Haryono	Terkilir	2	0		
6	Warno Utomo	Terkilir	4	1		
	Jumlah		15	1		
	Rata-rata		2,5	0.16		

b. Data Ketidaknyamanan

Tabel 10. Perbandingan Data Ketidaknyamanan sebelum dan Setelah Perancangan

				Jawaban	Kuisoner	
No	Nama	Jenis Keluhan	Sebelum P	erancangan	Sesudah Per	rancangan
140	Ivama	Jenis Kelunan	Tidak	Nyaman	Tidak	Nyaman
			nyaman	Nyaman	Nyaman	Nyaman
		Pergelangan telapak tangan		✓		✓
1	Miftakhul Huda	Punggung	\checkmark			\checkmark
1		Pinggang	\checkmark			\checkmark
		Jari tangan	\checkmark			\checkmark
		Kaki		\checkmark		\checkmark
		Pergelangan		\checkmark		\checkmark
		telapak tangan				
2	Num Hudo	Punggung	\checkmark			\checkmark
2	Nur Huda	Pinggang	\checkmark			\checkmark
		Jari tangan	\checkmark			\checkmark
		Kaki	✓			✓

		Dancalancan			
	Tumijo	Pergelangan	V		¥
		telapak tangan	,		
3		Punggung	v		V
		Pinggang	V		✓
		Jari tangan	✓		✓
		Kaki	\checkmark		\checkmark
		Pergelangan	\checkmark		\checkmark
	Pramono	telapak tangan			
4		Punggung	\checkmark		\checkmark
4		Pinggang	\checkmark		\checkmark
		Jari tangan	✓		✓
		Kaki		\checkmark	✓
		Pergelangan	✓	✓	✓
	Warno Utomo	telapak tangan			
_		Punggung	\checkmark		✓
5		Pinggang	\checkmark		✓
		Jari tangan	\checkmark		✓
		Kaki	\checkmark		✓
		Pergelangan	\checkmark		✓
	Haryono	telapak tangan			
_		Punggung	\checkmark		✓
6		Pinggang	✓		✓
		Jari tangan	✓		✓
		Kaki	•	✓	✓

c. Perbandingan Data Konsumsi Energi Sebelum dan Sesudah Perancangan

Tabel 11. Perbandingan Data Konsumsi Energi Sebelum dan Sesudah Perancangan

	Vatarangan	Seb	elum	Setelah Perancangan		
No		Peran	cangan			
NO	Keterangan	Sebelum	Sesudah	Sebelum	Sesudah	
		Bekerja	Bekerja	Bekerja	Bekerja	
1	Konsumsi Oksigen					
	(Liter/menit)	0,52	0,93	0,52	0,68	
2	Konsumsi Energi					
	(Kcal/menit)	2,50	4,46	2,50	3,27	

3.4. Pengolahan Data Setelah Perancangan

a. Pengujian Data Denyut Jantung

Tabel 12. Perbandingan Data Denyut Jantung Sebelum dan Sesudah Bekerja

Pengukuran	N	Sig. Hit	Sig. α	X	σ	BKA	BKB	N	N'	Keterangan (N' <n)< th=""></n)<>
Denyut Jantung	30	0,068	0,05	75,97	1,13	78,22	73,71	30	0,34	Cukup
Sebelum Bekerja Denyut Jantung Setelah Bekerja	30	0,273	0,05	84,10	1,16	86,41	81,79	30	1,16	Cukup

3.5. Pembahasan

Gambar 4. Sesudah Perancangan

Gambar 5. Sebelum Perancangan

1. Posisi Tubuh Saat Bekerja

Posisi kerja pada saat menggunakan Whellbarrow sebelum dan sesudah perancangan. Sebelum perancangan posisi kerja operator harus membungkuk terlebih dahulu sebelum mengangkat setang kemudi, sehingga posisi tubuh akan membungkuk. Setelah perancangan alat Whellbarrow, operator tidak perlu melakukan posisi membungkuk lagi karena posisi alat sudah dirancang dengan antropometri operator.

2. Perbedaan Alat Lama Dengan Alat Baru

Alat yang lama menggunakan roda 1, sedangkan alat yang baru menggunakan roda 3 sehingga dapat menghindarkan Whellbarrow terguling saat digunakan.

- a. Setir kemudi dapat disetel sesuai dengan keinginan operator, sehingga akan mendapat posisi tubuh yang ideal saat menggunakan Whellbarrow.
- b. Alat yang baru dilengkapi dengan rem.
- c. Whellbarrow yang lama meggunakan pegangan setang berukuran kecil, karet yang keras dan licin, sedangkan pada Whellbarrow yang baru pegangan setang diganti dengan karet busa yang tebal dan empuk sehingga tidak licin lagi.

3. Perubahan Tingkat Kecelakaan Kerja

Jumlah kecelakaan kerja saat menggunakan Whellbarow roda satu sebanyak 15 kali selama 1 bulan dengan rata-rata 2,5. Sedangkan saat menggunakan Whellbarrow roda tiga kecelakaan kerja berkurang menjadi 1 kali selama 1 bulan dengan rata-rata 0,16.

4. Perubahan Tingkat Kenyamanan

Setelah adanya perubahan rancangan ulang yang baru maka tingkat kenyamanan menjadi lebih baik, karena operator merasa lebih mudah saat menggunakan Whellbarrow yang baru. Hal itu dapat diketahui dari data kuisoner setelah perancangan ulang.

5. Perubahan Konsumsi Oksigen

Dalam menentukan besarnya konsumsi oksigen pada kondisi sebelum dan setelah perancangan dapat diketahui dari pengolahan data. Konsumsi oksigen setelah bekerja pada kondisi sebelum perancangan adalah sebesar 0,93 Liter/menit, sedangkan pada kondisi setelah perancangan sebesar 0,68. Berarti ada penurunan konsumsi oksigen sebesar 0,93 – 0,68 = 0,25 Liter/menit.

6. Perubahan Konsumsi Energi

Dalam menentukan besarnya konsumsi oksigen pada kondisi sebelum dan setelah perancangan dapat diketahui dari pengolahan data. Konsumsi energi setelah bekerja pada kondisi sebelum perancangan adalah sebesar 4,46 Kcal/menit, sedangkan pada kondisi setelah perancangan sebesar 3,27. Berarti ada penurunan konsumsi oksigen sebesar 4,46 – 3,27 = 1,19 Kcal/menit.

4. KESIMPULAN

Berdasarkan hasil penelitian dam perhitungan, maka dapat disimpulkan sebagai berikut:

- a. Operator menyatakan 100% nyaman pada anggota tubuh bagian pergelangan telapak tangan, punggung, pinggang, jari tangan dan kaki.
- b. Setelah dilakukan perancangan ulang maka angka penurunan kecelakaan kerja sebanyak 93 %.
- c. Dengan menggunakan roda 3 dapat mengurangi tingkat kelelahan operator yang dapat dilihat dari penurunan konsumsi energy. Sebelum perancangan konsumsi energy operator sebesar 4,46 Kcal/menit dan setelah perancangan konsumsi energinya hanya mencapai 3,27 Kcal/menit sehingga mengalami penurunan sebesar 1,19 Kcal/menit atau sebanyak 26,67 %

Saran

- a. Perlu dilakukan penelitian lanjutan dengan memberi rem untuk roda belakang.
- b. Peneliti disarankan untuk menambah pengatur kecepatan dan memperlebar tempat penampung benda kerja.

DAFTAR PUSTAKA

- Daryono, 2010, Perancangan Gergaji Logam Dan Peta Kerja Untuk Pengurangan Keluhan Fisik Di Bengkel Las Sejati Mulia, Teknik Industri Universitas Gunadarma.
- Nurmianto, Eko, 1996. *Ergonomi Konsep Dasar dan Aplikasinya*, Institut Teknologi Sepuluh Nopember, Guna Widya, Jakarta.
- Risdiyanto, Agus, 2011, Perbaikan Posisi Kerja Pengrajinan Dengan Perancangan Ulang Alat Pemipih Enceng Gondok yang Ergonomis Untuk Minimalisasi Tingkat Kelelahan Operator dan meningkatkan Produktivitas, Jurusan Teknik Industri, Universitas Ahmad Dahlan.
- Suardi, Rudi, 2005. Sistem Manajemen Keselamatan dan Kesehatan Kerja, Jurusan Mesin, Universitas Indonesia, PPM, Jakarta.
- Sutalaksana, Iftikar Z, 1985, *Teknik Tata Cara Kerja*, Diterbitkan oleh Departemen Teknik Industri Institut Teknologi Bandung.
- Widia, Mirta, dkk, 2006, *Rancang Ulang Whellbarrow yang Ergonomis dan Ekonomis*, jurusan Teknik Industri, Universitas Andalas..
- Wignjosoebroto, Sritomo, 2000. Ergonomi Studi Gerak Dan Waktu: Teknik Analisis untuk Peningkatan Produktivitas kerja, Surabaya: Guna Widya.