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Abstract

Multivalued mapping in normed space has been extensively studied in Mathematical analysis.
One example of multivalued mapping is normalized duality mapping. This mapping leads us
to another example of multivalued operator, named accretive operator, which is also a
multivalued operator. This study was aimed to examine the basic concepts of accretive and m-
accretive operator. Furthermore, discussion on some properties of accretive and m-accretive
operator was provided.
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1. Introduction

The definition of a multivalued mapping would be provided at first. Given 2R = {X: X € R} and a
mapping A: R — 2R, where A(x) = [0, |x|] for every x € R. We know that for every x € R, A(x) is a
closed interval. Hence, range of A is a set of closed intervals. It is one example of multivalued
mappings. Let X and Y be nonempty sets. A mapping that maps X to 2¥ is called multivalued
mapping. If A is a multivalued mapping, then domain of A is D(A) and range of A4 is R(A), where:

R(4) = U ACx).
x€D(A)

Furthermore, if both of X and Y are vector spaces, then A is called multivalued operator.

Let X be a real normed space. If a multivalued operator A maps to singleton, we say it as a
singlevalued operator. It is clear that an operator I: X — 2%, where I(x) = {x} for any x € X, is a
singlevalued operator. In the sequel, we say that | is an identity operator. This paper is going to study
other examples of multivalued operators and some of their properties in normed spaces.

This was a literature study of some papers related to an operator in normed space, named m-accretive
operator. This operator has a role in applied mathematics. In 1967, Browder [1] studied about non-
expansive and accretive operator in Banach spaces. He got some result related to accretive operator.
Barbu [2] also studied accretive set in Banach spaces. Let X be a real Banach space. In his book,
Barbu talks about accretive as a subset of X x X. Furthermore, Barbu also talks about dissipative and
m-dissipative set. A dissipative set is negative of an accretive set. It means if A is an acrretive set then
—A is a dissipative set. However, an element of subset of X X X can be assumed as a pair of an
element of a mapping domain with its mapping value. Therefore, it makes sense if we assume
accretive as an operator. The main contribution of this paper is to review some properties of m-
accretive as an operator, not a set. Some properties of this operator will be obtained by assuming
properties of accretive set, which is discussed Barbu, as properties of operator. This paper is going to
study basic concepts and some properties of accretive and m-accretive operator through exposure
proofs and examples in more detail.

2. Preliminary

We are going to continue to another example of multivalued mapping, named normalized duality
mapping. Before we study more about normalized duality mapping, we need to know about dual
space. Let X be a real normed space. The set of all bounded linear functionals on X is called dual space
of X and is denoted by X*. Some properties related to dual space, that we need to study normalized
duality mapping, have been discussed by Kreyszig [3].

Let X be a real normed space and X* be a dual space of X. In the following, (f, x) denotes value of f
inx € X (or (f,x) = f(x)), where f € X*. Theorem 1 will ensure that normalized duality mapping is
well-defined.

Theorem 1. Let X be a real normed space and X* dual space of X. For any x € X, we have:
{f X", f)y = lIxlI> = If I} # 0.

Proof. If x = 0, then we have f = 0 € X*, f(x) = 0 = ||x||%, and ||f]| = 0 = ||x]||. Therefore, f =
0€{f eX*:(x,f)=lIxlI> = lIfII?}. If x # 0, then x||x|| # 0. By Hahn-Banach Theorem in Kreyszig
[3], there exist f € X* such that [|f]| = 1 and £ (x|lx|]) = ||xllxl||. A mapping f: X — R defined by

fo) = lIxlIf )

for any y € X. Furthermore, we have

FG = lIxlf G = flxllx) = [|xllxll]] = l1x11%,

so that
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FCo = lIxl2. (1)
Now, it remains to prove ||f|| = Ilx|l. For any y € X, where |ly|| < 1, we have

IFO| = lxFO)I = lxlF O < A< [lx]l.
Thus

fll = sup{|f O)]: ¥ € X, lIyll < 1} < lIx]I. )
By Eq. (1), it satisfies
lll? =[£G < [IF ][l ®3)

From Eqg. (2) and Eqg. (3), the desired conclusion follows.

Under Theorem 1, it makes sense to define a mapping J: X — 2% by

J) ={f € X":(x, f) = llxlI llx|l = If |}, foranyx € X.

This is called the normalized duality mapping. Clearly, J is multivalued mapping. The normalized
duality mapping is going to lead us to another example of multivalued mapping, named accretive
operator, that are going to discuss in the following section.

3. Accretive Operators

Let X be a real normed space and let ¢: [0, ) — [0, o) be a continuous mapping, where ¢(0) = 0
and ¢(r) > 0 for any r > 0. An operator A: D(A) € X - 2% is said to be ¢-expansive if for every
x,y € D(A) obtain

lu—v|| = ¢(l|]x —y|]) forallu € A(x),v € A(y).
For example, given a mapping ¢: [0, c0) — [0, o) defined by
¢(x) = 2x forall x € [0, )
and an operator A: R — 2R defined by
A(x) = {4x} forallx € R.

Clearly, A is a ¢-expansive operator. Meanwhile, an operator A: D(A) € X — 2% is said to be ¢-
expansive if for every x,y € D(A) there exists j € J(x — y) such that

(u—v,j) 2 ¢(lx = ylDllx — yll forallu € A(x),v € A(y),

where J: X — 2% is the normalized duality mapping. Furthermore, an operator A is said to be strongly
accretive if ¢(r) = kr with0 < k < 1.

If ¢ is zero mapping, then ¢ is not appropriate with the latter ¢. In this case, we say the latter mapping
A is accretive.

Definition 2. Let X be a real normed space. An operator A: D(A) € X — 2% is said to be accretive if
for every x,y € D(A) there exists j € J(x — y) such that

(u—v,j)=0 forallu e A(x),v € A(y)
where J: X — 2% is the normalized duality mapping.
Example 3. Given an operator T: X = R — 2% defined by
T(x) = {x}forall x € X.
For every x,y € X, we have
Jex—y)={f €X:(x—y.f)=lx—yI* = lIfII*}.

Define a mapping f: X — R with f(t) = (x — y)t forany t € X. Because f € X" and ||f]|| = |x — yI,
so{x —y, f) = |x —y|? = ||If||? Therefore, f € J(x — y). Furthermore, it obtains
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(T =T, f)=fTE) -TH) = x-yTK) -TY)) = (x—y)*>0.
Hence, T is an accretive operator. [

It is not easy to find an element of value of the normalized duality mapping that satisfies Definition 2.
Corollary 5 is going to offer a characteristic of an accretive operator, so can be used to check an
operator is accretive or not.

Theorem 4. Let X be a real normed space and J: X — 2% be normalized duality mapping. For every
x,y € X we have ||x]| < ||x + ay|| for all @ > 0 if and only if there exists j € J(x) such that (y,j) >
0.

Proof. If x = 0 then for every y € Xobtains ||x|| = 0 < ||0 + ay]|| for all « > 0. There exists j =0 €
J(0) where J(0) = {j € X*:(0,j) = [|0]|? = ||j||?}. If x # 0, for every y € X there exists j € J(x) soO
that (y, j) = 0. For any @ > 0 we have

Ix11? = (x, )
< (x,j) + a(y,j)
<{(x+ay,j)
< ljllllx + ayll.
Because ||x|| = [lj]lthen ||x|| < ||x + ay]||. Conversely, for every y € X we have ||x|| < ||x + ay||. By

Theorem 1, there exists j; € J(x + ay), this means (x + ay, j,) = [lx + ay|l? = |lj,||%. Define g, =
Ja_ 50 it obtains || g, |l = 1. Consequently, g, € Flll](x + ay). Therefore

el
llxl < llx + ayll
_ x4 ayll?
el
_{xtayja)
el
=(x + ay, ga)
= (X, ga) + (Y, ga)-

A net (gq)qer+ 1S ON the closed unit ball. According to Brezis [4], closed unit ball is compact in
weak* topology, so net (g,),er+ has convergent subnet. Let (§, ) er+ b€ a convergent subnet of net
(ga) qer+ and g be its limit. Clearly, g € X™.

Notice that

. < i : o
Jim flx|l < Tim flx|l + lim, a(y, §a)
o)
llxIl < (x, g). 4)
Furthermore, because ||, || = 1 then
x|l < (X, §a) + a(y, §o) < llxll + Ay, Go)-

Hence, a(y, §,) = 0. Consequently, we have

(r.9)=0. ®)
By Eq. (4) , it obtains ||x|| < (x,g) < lIxllllgll < llx]| so {x, g) = ||x]|. Define a mapping j: X - R by

jw) = g(w)||x|| forallw € X.

By proving that j € J(x) and (y, j) = 0, proof of this theorem will be complete. It is clear that j € X™.
Furthermore, forany w € X, ||w|| < 1, we have

[Kw, )< llglliiwllllxll < llglHllxll = 1ixll,
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so ||jll = sup{l{w, j)|:w € X, ||w|| < 1} < ||x]|. Because ||x]|| < (x, g), SO we have

lxl1? < {x, @Hllxll = (x, 7} < llxlljll-
Therefore |[x]|| < ||jl|l. Consequently, ||x|| = ||j||. This means j € J(x). Furthermore, by Eq. (5) we
have (y,j) = (v, g)lIx|l = 0. u
Based on Theorem 4, we can get Corollary 5 that declare a characteristic of accretive operator.

Corollary 5. Let X be a real normed space. An operator A: D(A) € X — 2% is accretive if and only if
for every x,y € D(A), @ > 0 obtains

lx =yl < IGx = ¥) + a(u =)l
forallu € A(x),v € A(y).
Proof. For any x,y € D(A), there exists j € J(x — y) such that
(u—v,j)=0forallu e A(x),v € A(y),
where J: X — 2% is normalized duality mapping. According to Theorem 4, for every a > 0 we have
Ix =yl < llx —¥) + au—v)l|
forall u € A(x),v € A(y).
Conservely, if for every a > 0, we have ||x —y|l < ||[(x —y) + a(u — v)|| for all ue€ A(x),v €
A(y),so by Theorem 4 there exists j € J(x —y) such that (u —v,j) = 0. This means A is an
accretive operator. m
Example 6. An operator A: R? — 2R* defined by
A(x) = {(xy,—x;)} forall ¥ = (x,x,) € R?
is accretive because for all ¥ = (x1,x,),y = (v1,¥,) € R? and & > 0 obtain
”(9E -y + ‘X(A(f) - A(}_’))” = ||((x1,x2) - (J’l:YZ)) + a((xz, —x1) — V2, —)’1))”
= ||(e1 —y1 + ax; — ay,), (X — ¥, — axy + ay)l|
= ||((X1 —y1) taixz —y2), (X2 —y2) + aly; — Xl))”

= \/((Xl —y1) +alx; — YZ))Z + ((x2 —y2) + alys — X1))2

=V + o) —y1)?*+ A+ ) (X2 —y2)? + 2a(Xz —y2) (X1 — y1 + Y1 — X1)

= \/(X1 —y1)? + (xz — y2)? + a2V + o2 (y; — x;)?

=1+ a®)(x —y)? + (1 + a?)(x, — y7)?
=V @+ a®)((x1 — y1)? + (x2 —y2)?)
=+ a0 —yD? + (xz —¥2)?

=y @+ a®)lx -l

> lx =7l .
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4. m-accretive Operators

In this section, we study an accretive operator with some assumptions. Let X be a real normed space
and A:D(A) € X — 2% be an accretive operator. For any A >0, we define an operator I +
AA:D(A) € X — 2%, with [ is an identity operator.

Definition 7. Let X be a real normed space and A:D(A) € X — 2% be an accretive operator.
Operator A is said to be m-accretive if R(I + 14) = X, for any 4 > 0.

Example 8. Operator A: R? — 2R defined on Example 6 is m-accretive operator. By Example 6, A is
accretive. Now, it remains to prove that for any 2 > 0, R(I + 14) = R2. For every 1 > 0, it is clear
that R(I + 14) € R2. For every y = (y4,,) € R? there exists x = (x;,x,) € R? such that

Hence, we have
(I+24)(x) = x + 1A(X)

:<y1—ly2 AJ’1+)’2)+A(AJ’1+)’2 —J’1+A)’2)

14+42 7 1422 14+42 7 1+ 22

_ (N~ Ay + 22y + Ay, Ays +y, — Ayy + A%y,
1+ 22 ’ 1+ 22

= (1, ¥2)-
Therefore R? € R(I + AA4). Hence, A is m-accretive operator. [ ]

Now are going to continue this section with some properties of m-accretive operator. These properties
will be useful to extend our study in accretive operator and its application in applied mathematics.

Theorem 9. Let X be a real normed space and A: D(4) € X — 2% be a m-accretive operator. For
every y € X, operator A + y: D(A) € X — 2% defined by

(A+y)(x) =A(x) +,
for all x € D(A), is m-accretive.
Proof. First, we are going to prove for all y € X, operator A + y is accretive. Because A is accretive,
for every x;,x, € D(A) there exists j € J(x; — x,) such that (u —v,j) =0, for all u € A(x,),v €

A(xy).Hence (u+y—(w+y),jy=0,forallu+yeA(x) +y,v+y € A(x,) +y. Therefore A +
y is accretive.

Second, we are going to prove that 72(1 + 1A+ y)) =X, forall A > 0. Givenany 4 >0 and z € X.
Because A is m-accretive, there exists x € D(A) such that z — Ay € (I + 14)(x). Hence, we have

zEXx+AA(x) + Ay = (I + A4 + y))(x).
This means, z € R(I + A(4 +y)), so A + y is m-accretive. ]

Before we continue this section, we need to recall a closed multivalued operator. Let X,Y be real
normed spaces. Operator A: D(A) € X — 2% is closed if for any convergent sequence (x,,) c D(A)
and for any convergent sequence (y,,), where y,, € A(x,,) for all n € N, then

lim x,, € D(A) and lim y,, € A (lim xn).
n—oo n-—-oo n—-oo

Theorem 10. Let X be a real normed space. If operator A: D(4) € X — 2% is m-accretive then A is
closed.

Proof. Let (x,) € D(A) be a convergent sequence andx, € X be its limit. Let (y,) be convergent
sequence, where y, € A(x,) for all n € N, and y, € X be its limit. By Corollary 5, for every n €
N,x € D(A) and @ > 0 we have
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Ixxn, — x|l < | (xn — x) + a(y, — ¥)l, forally € A(x).
Therefore, if n —» oo then for every a > 0 we have

llxo — xIl < | (xo — x) + a(yo — Y)l
forall x € D(A),y € A(x). By Theorem 4, there exists j € J(x, — x) such that (y, — y,j) = 0. Hence

(y —yo,j) <0. (6)

Because A is m-accretive then xy + vy, € R(I + A). There exists x,, € D(A) such that x, + y, € (I +
A)(x,). This means that there exists y, € A(x,) such that x, + y, = x, + y.. By Eq. (6), we have
(xo — X, J) = (¥« — ¥0,J) < 0. Hence j € J(xo — x.) and consequently this result satisfies

llxo — %117 = (%o — x.,j) <0,
SO ||xg — x,|| = 0. This means x, = x, and y, = y,. Therefore, x, € D(A) and y, € A(x,). Finally
we have

Vo EA (Aim xn).

—00

By Theorem 10, we derive the following result.

Theorem 11. Let X be a real normed space and B: X — X be a continuous operator. If A: D(A) ©
X - 2% be a m-accretive operator, then A+B is closed.

Proof. Let (x,) € D(A) be any convergent sequence and x, € X be its limit. Let (y,) be any
convergent sequence, with y, € (A + B)(x,,) for all n € N. There exists v,, € A(x,,) such that y,, =
v, + B(x,). Because A is m-accretive, by Theorem 10 we have A is closed. Thus x, € D(4) and

lim v, € A(x.,). (7
n—-oo
Hence we have

lim y, = lim (v, + B(xy))

n—oo

= lim v, + lim B(x,)
n—-oo

n—-oo

= lim v, + B(lim xn)

n—->oo n—>0co
= limv, + B(x.)
n—oo

Because of Eg. (7), then
lim y, € ACx.) +B(x.) = (4 + B)(x.).

This means A + B is closed. ]

5. Conclusion
Let X be a real normed space. An operator A: D(A) € X — 2% is accretive if and only if for every
x,y € D(A), a > 0 obtains

llx =yl < [(x = ¥) + a(u—=v)l

forallu € A(x),v € A(y). If R(I + AA) = X, for any 1 > 0, then operator A is said to be m-accretive.
For an operator m-accretive A, operator A is closed and for every y € X, operator A+ y: D(A) € X -
2% defined by

A+y)(x)=Ax) +y,

for all x € D(A),is m-accretive. Furthermore, if B:X — X be a continuous operator, then A+B is
closed.
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