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Abstract 

Multivalued mapping in normed space has been extensively studied in Mathematical analysis. 
One example of multivalued mapping is normalized duality mapping. This mapping leads us 
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1. Introduction 

The definition of a multivalued mapping would be provided at first. Given 2ℝ = {𝑋𝑋:𝑋𝑋 ⊆ ℝ} and a 
mapping 𝐴𝐴:ℝ → 2ℝ, where 𝐴𝐴(𝑥𝑥) = [0, |𝑥𝑥|] for every 𝑥𝑥 ∈ ℝ. We know that for every 𝑥𝑥 ∈ ℝ, 𝐴𝐴(𝑥𝑥) is a 
closed interval. Hence, range of 𝐴𝐴 is a set of closed intervals. It is one example of multivalued 
mappings. Let 𝑋𝑋 and 𝑌𝑌 be nonempty sets. A mapping that maps 𝑋𝑋 to 2𝑌𝑌 is called multivalued 
mapping. If 𝐴𝐴 is a multivalued mapping, then domain of 𝐴𝐴 is 𝐷𝐷(𝐴𝐴) and range of 𝐴𝐴 is ℛ(𝐴𝐴), where: 

ℛ(𝐴𝐴) = � 𝐴𝐴(𝑥𝑥)
𝑥𝑥∈𝐷𝐷(𝐴𝐴)

. 

Furthermore, if both of 𝑋𝑋 and 𝑌𝑌 are vector spaces, then 𝐴𝐴 is called multivalued operator. 

Let 𝑋𝑋 be a real normed space. If a multivalued operator 𝐴𝐴 maps to singleton, we say it as a 
singlevalued operator. It is clear that an operator 𝐼𝐼:𝑋𝑋 → 2𝑋𝑋, where 𝐼𝐼(𝑥𝑥) = {𝑥𝑥} for any 𝑥𝑥 ∈ 𝑋𝑋, is a 
singlevalued operator. In the sequel, we say that I is an identity operator. This paper is going to study 
other examples of multivalued operators and some of their properties in normed spaces.  

This was a literature study of some papers related to an operator in normed space, named m-accretive 
operator. This operator has a role in applied mathematics. In 1967, Browder [1] studied about non-
expansive and accretive operator in Banach spaces. He got some result related to accretive operator. 
Barbu [2] also studied accretive set in Banach spaces. Let 𝑋𝑋 be a real Banach space. In his book, 
Barbu talks about accretive as a subset of 𝑋𝑋 × 𝑋𝑋. Furthermore, Barbu also talks about dissipative and 
m-dissipative set. A dissipative set is negative of an accretive set. It means if A is an acrretive set then 
−𝐴𝐴 is a dissipative set. However, an element of subset of 𝑋𝑋 × 𝑋𝑋 can be assumed as a pair of an 
element of a mapping domain with its mapping value. Therefore, it makes sense if we assume 
accretive as an operator. The main contribution of this paper is to review some properties of m-
accretive as an operator, not a set. Some properties of this operator will be obtained by assuming 
properties of accretive set, which is discussed Barbu, as properties of operator. This paper is going to 
study basic concepts and some properties of accretive and m-accretive operator through exposure 
proofs and examples in more detail. 

2. Preliminary 

We are going to continue to another example of multivalued mapping, named normalized duality 
mapping. Before we study more about normalized duality mapping, we need to know about dual 
space. Let 𝑋𝑋 be a real normed space. The set of all bounded linear functionals on 𝑋𝑋 is called dual space 
of 𝑋𝑋 and is denoted by 𝑋𝑋∗. Some properties related to dual space, that we need to study normalized  
duality mapping, have been discussed by Kreyszig [3].   

Let 𝑋𝑋 be a real normed space and 𝑋𝑋∗ be a dual space of  𝑋𝑋. In the following, 〈𝑓𝑓, 𝑥𝑥〉 denotes value of 𝑓𝑓 
in 𝑥𝑥 ∈ 𝑋𝑋 (or 〈𝑓𝑓, 𝑥𝑥〉 = 𝑓𝑓(𝑥𝑥)), where 𝑓𝑓 ∈ 𝑋𝑋∗. Theorem 1 will ensure that normalized duality mapping is 
well-defined. 

Theorem 1. Let 𝑋𝑋 be a real normed space and 𝑋𝑋∗ dual space of  𝑋𝑋. For any 𝑥𝑥 ∈ 𝑋𝑋, we have: 

{𝑓𝑓 ∈ 𝑋𝑋∗: 〈𝑥𝑥, 𝑓𝑓〉 = ‖𝑥𝑥‖2 = ‖𝑓𝑓‖2} ≠ 0. 

Proof. If 𝑥𝑥 = 0, then we have 𝑓𝑓 = 0 ∈ 𝑋𝑋∗, 𝑓𝑓(𝑥𝑥) = 0 = ‖𝑥𝑥‖2, and ‖𝑓𝑓‖ = 0 = ‖𝑥𝑥‖. Therefore, 𝑓𝑓 =
0 ∈ {𝑓𝑓 ∈ 𝑋𝑋∗: 〈𝑥𝑥,𝑓𝑓〉 = ‖𝑥𝑥‖2 = ‖𝑓𝑓‖2}. If 𝑥𝑥 ≠ 0, then 𝑥𝑥‖𝑥𝑥‖ ≠ 0. By Hahn-Banach Theorem in Kreyszig 
[3], there exist 𝑓𝑓 ∈ 𝑋𝑋∗ such that ‖𝑓𝑓‖ = 1 and 𝑓𝑓(𝑥𝑥‖𝑥𝑥‖) = �𝑥𝑥‖𝑥𝑥‖�. A mapping 𝑓𝑓:𝑋𝑋 → ℝ defined by 

𝑓𝑓(𝑦𝑦) = ‖𝑥𝑥‖𝑓𝑓(𝑦𝑦) 

for any 𝑦𝑦 ∈ 𝑋𝑋. Furthermore, we have 

𝑓𝑓(𝑥𝑥) = ‖𝑥𝑥‖𝑓𝑓(𝑥𝑥) = 𝑓𝑓(‖𝑥𝑥‖𝑥𝑥) = �𝑥𝑥‖𝑥𝑥‖� = ‖𝑥𝑥‖2, 

so that 
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𝑓𝑓(𝑥𝑥) = ‖𝑥𝑥‖2.         (1) 

Now, it remains to prove �𝑓𝑓� = ‖𝑥𝑥‖. For any 𝑦𝑦 ∈ 𝑋𝑋, where ‖𝑦𝑦‖ ≤ 1, we have 

�𝑓𝑓(𝑦𝑦)� = |‖𝑥𝑥‖𝑓𝑓(𝑦𝑦)| = ‖𝑥𝑥‖|𝑓𝑓(𝑦𝑦)| ≤ ‖𝑥𝑥‖‖𝑓𝑓‖‖𝑦𝑦‖ ≤ ‖𝑥𝑥‖. 

Thus 

�𝑓𝑓� = sup��𝑓𝑓(𝑦𝑦)�:𝑦𝑦 ∈ 𝑋𝑋, ‖𝑦𝑦‖ ≤ 1� ≤ ‖𝑥𝑥‖.                           (2) 

By Eq. (1), it satisfies 
‖𝑥𝑥‖2 = �𝑓𝑓(𝑥𝑥)� ≤ �𝑓𝑓�‖𝑥𝑥‖.         (3) 

From Eq. (2) and Eq. (3), the desired conclusion follows.           

Under Theorem 1, it makes sense to define a mapping 𝐽𝐽:𝑋𝑋 → 2𝑋𝑋∗ by 

𝐽𝐽(𝑥𝑥) = {𝑓𝑓 ∈ 𝑋𝑋∗: 〈𝑥𝑥,𝑓𝑓〉 = ‖𝑥𝑥‖2,‖𝑥𝑥‖ = ‖𝑓𝑓‖},   for any 𝑥𝑥 ∈ 𝑋𝑋. 

This is called the normalized duality mapping. Clearly, 𝐽𝐽 is multivalued mapping. The normalized 
duality mapping is going to lead us to another example of multivalued mapping, named accretive 
operator, that are going to discuss in the following section.   

3. Accretive Operators 

Let 𝑋𝑋 be a real normed space and let 𝜙𝜙: [0,∞) → [0,∞) be a continuous mapping, where 𝜙𝜙(0) = 0 
and 𝜙𝜙(𝑟𝑟) > 0 for any 𝑟𝑟 > 0. An operator 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 is said to be 𝜙𝜙-expansive if for every 
𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷(𝐴𝐴) obtain 

‖𝑢𝑢 − 𝑣𝑣‖ ≥ 𝜙𝜙(‖𝑥𝑥 − 𝑦𝑦‖) for all 𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥), 𝑣𝑣 ∈ 𝐴𝐴(𝑦𝑦). 

For example, given a mapping 𝜙𝜙: [0,∞) → [0,∞) defined by 

𝜙𝜙(𝑥𝑥) = 2𝑥𝑥 for all 𝑥𝑥 ∈ [0,∞) 

and an operator 𝐴𝐴:ℝ → 2ℝ defined by 

𝐴𝐴(𝑥𝑥) = {4𝑥𝑥} for all 𝑥𝑥 ∈ ℝ. 

Clearly, 𝐴𝐴 is a 𝜙𝜙-expansive operator. Meanwhile, an operator 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 is said to be 𝜙𝜙-
expansive if for every 𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷(𝐴𝐴) there exists 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥 − 𝑦𝑦) such that 

〈𝑢𝑢 − 𝑣𝑣, 𝑗𝑗〉 ≥ 𝜙𝜙(‖𝑥𝑥 − 𝑦𝑦‖)‖𝑥𝑥 − 𝑦𝑦‖ for all 𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥), 𝑣𝑣 ∈ 𝐴𝐴(𝑦𝑦), 

where 𝐽𝐽:𝑋𝑋 → 2𝑋𝑋∗  is the normalized duality mapping. Furthermore, an operator 𝐴𝐴 is said to be strongly 
accretive if 𝜙𝜙(𝑟𝑟) = 𝑘𝑘𝑟𝑟 with 0 < 𝑘𝑘 < 1. 

If 𝜙𝜙 is zero mapping, then 𝜙𝜙 is not appropriate with the latter 𝜙𝜙. In this case, we say the latter mapping 
𝐴𝐴 is accretive. 

Definition 2. Let 𝑋𝑋 be a real normed space. An operator 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 is said to be accretive if 
for every 𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷(𝐴𝐴) there exists 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥 − 𝑦𝑦) such that 

〈𝑢𝑢 − 𝑣𝑣, 𝑗𝑗〉 ≥ 0 𝑓𝑓𝑓𝑓𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥), 𝑣𝑣 ∈ 𝐴𝐴(𝑦𝑦) 

where 𝐽𝐽:𝑋𝑋 → 2𝑋𝑋∗  is the normalized duality mapping.   

Example 3. Given an operator 𝑇𝑇:𝑋𝑋 = ℝ → 2𝑋𝑋 defined by 

𝑇𝑇(𝑥𝑥) = {𝑥𝑥} for all 𝑥𝑥 ∈ 𝑋𝑋. 

For every 𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋, we have 

𝐽𝐽(𝑥𝑥 − 𝑦𝑦) = {𝑓𝑓 ∈ 𝑋𝑋∗: 〈𝑥𝑥 − 𝑦𝑦,𝑓𝑓〉 = |𝑥𝑥 − 𝑦𝑦|2 = ‖𝑓𝑓‖2}. 

Define a mapping 𝑓𝑓:𝑋𝑋 → ℝ with 𝑓𝑓(𝑡𝑡) = (𝑥𝑥 − 𝑦𝑦)𝑡𝑡 for any 𝑡𝑡 ∈ 𝑋𝑋. Because 𝑓𝑓 ∈ 𝑋𝑋∗ and ‖𝑓𝑓‖ = |𝑥𝑥 − 𝑦𝑦|, 
so 〈𝑥𝑥 − 𝑦𝑦,𝑓𝑓〉 = |𝑥𝑥 − 𝑦𝑦|2 = ‖𝑓𝑓‖2. Therefore, 𝑓𝑓 ∈ 𝐽𝐽(𝑥𝑥 − 𝑦𝑦). Furthermore, it obtains 
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〈𝑇𝑇(𝑥𝑥) − 𝑇𝑇(𝑦𝑦),𝑓𝑓〉 = 𝑓𝑓(𝑇𝑇(𝑥𝑥) − 𝑇𝑇(𝑦𝑦)) = (𝑥𝑥 − 𝑦𝑦)(𝑇𝑇(𝑥𝑥) − 𝑇𝑇(𝑦𝑦)) = (𝑥𝑥 − 𝑦𝑦)2 > 0. 

Hence, 𝑇𝑇 is an accretive operator.           ∎ 

It is not easy to find an element of value of the normalized duality mapping that satisfies Definition 2. 
Corollary 5  is going to offer a characteristic of an accretive operator, so can be used to check an 
operator is accretive or not. 

Theorem 4. Let 𝑋𝑋 be a real normed space and 𝐽𝐽:𝑋𝑋 → 2𝑋𝑋∗  be normalized duality mapping. For every 
𝑥𝑥,𝑦𝑦 ∈ 𝑋𝑋 we have ‖𝑥𝑥‖ ≤ ‖𝑥𝑥 + 𝛼𝛼𝑦𝑦‖ for all 𝛼𝛼 > 0 if and only if there exists 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥) such that 〈𝑦𝑦, 𝑗𝑗〉 ≥
0. 

Proof. If 𝑥𝑥 = 0 then for every 𝑦𝑦 ∈ 𝑋𝑋obtains ‖𝑥𝑥‖ = 0 ≤ ‖0 + 𝛼𝛼𝑦𝑦‖ for all 𝛼𝛼 > 0. There exists 𝑗𝑗 = 0 ∈
𝐽𝐽(0) where 𝐽𝐽(0) = {𝑗𝑗 ∈ 𝑋𝑋∗: 〈0, 𝑗𝑗〉 = ‖0‖2 = ‖𝑗𝑗‖2}. If 𝑥𝑥 ≠ 0, for every 𝑦𝑦 ∈ 𝑋𝑋 there exists 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥) so 
that 〈𝑦𝑦, 𝑗𝑗〉 ≥ 0. For any 𝛼𝛼 > 0 we have 

‖𝑥𝑥‖2 = 〈𝑥𝑥, 𝑗𝑗〉 

≤ 〈𝑥𝑥, 𝑗𝑗〉+ 𝛼𝛼〈𝑦𝑦, 𝑗𝑗〉 

≤ 〈𝑥𝑥 + 𝛼𝛼𝑦𝑦, 𝑗𝑗〉 

≤ ‖𝑗𝑗‖‖𝑥𝑥 + 𝛼𝛼𝑦𝑦‖. 

Because ‖𝑥𝑥‖ = ‖𝑗𝑗‖then ‖𝑥𝑥‖ ≤ ‖𝑥𝑥 + 𝛼𝛼𝑦𝑦‖. Conversely, for every 𝑦𝑦 ∈ 𝑋𝑋 we have ‖𝑥𝑥‖ ≤ ‖𝑥𝑥 + 𝛼𝛼𝑦𝑦‖. By 
Theorem 1, there exists 𝑗𝑗𝛼𝛼 ∈ 𝐽𝐽(𝑥𝑥 + 𝛼𝛼𝑦𝑦), this means 〈𝑥𝑥 + 𝛼𝛼𝑦𝑦, 𝑗𝑗𝛼𝛼〉 = ‖𝑥𝑥 + 𝛼𝛼𝑦𝑦‖2 = ‖𝑗𝑗𝛼𝛼‖2. Define 𝑔𝑔𝛼𝛼 =
𝑗𝑗𝛼𝛼
‖𝑗𝑗𝛼𝛼‖

  so it obtains ‖𝑔𝑔𝛼𝛼‖ = 1. Consequently, 𝑔𝑔𝛼𝛼 ∈
1

‖𝑗𝑗𝛼𝛼‖
𝐽𝐽(𝑥𝑥 + 𝛼𝛼𝑦𝑦). Therefore 

‖𝑥𝑥‖ ≤ ‖𝑥𝑥 + 𝛼𝛼𝑦𝑦‖ 

=
‖𝑥𝑥 + 𝛼𝛼𝑦𝑦‖2

‖𝑗𝑗𝛼𝛼‖
 

=
〈𝑥𝑥 + 𝛼𝛼𝑦𝑦, 𝑗𝑗𝛼𝛼〉

‖𝑗𝑗𝛼𝛼‖
 

= 〈𝑥𝑥 + 𝛼𝛼𝑦𝑦,𝑔𝑔𝛼𝛼〉 

= 〈𝑥𝑥,𝑔𝑔𝛼𝛼〉 + 𝛼𝛼〈𝑦𝑦,𝑔𝑔𝛼𝛼〉. 

A net (𝑔𝑔𝛼𝛼)𝛼𝛼∈ℝ+ is on the closed unit ball. According to Brezis [4], closed unit ball is compact in 
weak* topology, so net (𝑔𝑔𝛼𝛼)𝛼𝛼∈ℝ+ has convergent subnet. Let (𝑔𝑔� 𝛼𝛼 )𝛼𝛼∈ℝ+ be a convergent subnet of net 
(𝑔𝑔𝛼𝛼)𝛼𝛼∈ℝ+ and 𝑔𝑔 be its limit. Clearly, 𝑔𝑔 ∈ 𝑋𝑋∗.   
Notice that 

lim
𝛼𝛼→0+

‖𝑥𝑥‖ ≤ lim
𝛼𝛼→0+

‖𝑥𝑥‖+ lim
𝛼𝛼→0+

𝛼𝛼〈𝑦𝑦,𝑔𝑔�𝛼𝛼〉 
so 

‖𝑥𝑥‖ ≤ 〈𝑥𝑥,𝑔𝑔〉.         (4) 

Furthermore, because ‖𝑔𝑔�𝛼𝛼‖ = 1 then 
‖𝑥𝑥‖ ≤ 〈𝑥𝑥,𝑔𝑔�𝛼𝛼〉+ 𝛼𝛼〈𝑦𝑦,𝑔𝑔�𝛼𝛼〉 ≤ ‖𝑥𝑥‖+ 𝛼𝛼〈𝑦𝑦,𝑔𝑔�𝛼𝛼〉.  

Hence, 𝛼𝛼〈𝑦𝑦,𝑔𝑔�𝛼𝛼〉 ≥ 0. Consequently, we have 

〈𝑦𝑦,𝑔𝑔〉 ≥ 0.          (5) 

By Eq. (4) , it obtains ‖𝑥𝑥‖ ≤ 〈𝑥𝑥,𝑔𝑔〉 ≤ ‖𝑥𝑥‖‖𝑔𝑔‖ ≤ ‖𝑥𝑥‖ so 〈𝑥𝑥,𝑔𝑔〉 = ‖𝑥𝑥‖. Define a mapping 𝑗𝑗:𝑋𝑋 → ℝ by 

𝑗𝑗(𝑤𝑤) = 𝑔𝑔(𝑤𝑤)‖𝑥𝑥‖ for all 𝑤𝑤 ∈ 𝑋𝑋. 

By proving that 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥) and 〈𝑦𝑦, 𝑗𝑗〉 ≥ 0, proof of this theorem will be complete. It is clear that 𝑗𝑗 ∈ 𝑋𝑋∗. 
Furthermore, for any 𝑤𝑤 ∈ 𝑋𝑋, ‖𝑤𝑤‖ ≤ 1, we have 

|〈𝑤𝑤, 𝑗𝑗〉| ≤ ‖𝑔𝑔‖‖𝑤𝑤‖‖𝑥𝑥‖ ≤ ‖𝑔𝑔‖‖𝑥𝑥‖ = ‖𝑥𝑥‖, 
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so ‖𝑗𝑗‖ = sup{|〈𝑤𝑤, 𝑗𝑗〉|:𝑤𝑤 ∈ 𝑋𝑋, ‖𝑤𝑤‖ ≤ 1} ≤ ‖𝑥𝑥‖. Because ‖𝑥𝑥‖ ≤ 〈𝑥𝑥,𝑔𝑔〉, so we have 

‖𝑥𝑥‖2 ≤ 〈𝑥𝑥,𝑔𝑔〉‖𝑥𝑥‖ = 〈𝑥𝑥, 𝑗𝑗〉 ≤ ‖𝑥𝑥‖‖𝑗𝑗‖. 

Therefore ‖𝑥𝑥‖ ≤ ‖𝑗𝑗‖. Consequently, ‖𝑥𝑥‖ = ‖𝑗𝑗‖. This means 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥).  Furthermore, by Eq. (5) we 
have 〈𝑦𝑦, 𝑗𝑗〉 = 〈𝑦𝑦,𝑔𝑔〉‖𝑥𝑥‖ ≥ 0.                                     ∎ 
 
Based on Theorem 4, we can get Corollary 5 that declare a characteristic of accretive operator. 
 
Corollary 5. Let 𝑋𝑋 be a real normed space. An operator 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 is accretive if and only if 
for every 𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷(𝐴𝐴),𝛼𝛼 > 0 obtains 

‖𝑥𝑥 − 𝑦𝑦‖ ≤ ‖(𝑥𝑥 − 𝑦𝑦) + 𝛼𝛼(𝑢𝑢 − 𝑣𝑣)‖ 

for all 𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥), 𝑣𝑣 ∈ 𝐴𝐴(𝑦𝑦).        

Proof. For any 𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷(𝐴𝐴), there exists 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥 − 𝑦𝑦) such that 

〈𝑢𝑢 − 𝑣𝑣, 𝑗𝑗〉 ≥ 0 for all 𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥),𝑣𝑣 ∈ 𝐴𝐴(𝑦𝑦), 

where 𝐽𝐽:𝑋𝑋 → 2𝑋𝑋∗  is normalized duality mapping. According to Theorem 4, for every 𝛼𝛼 > 0 we have 

‖𝑥𝑥 − 𝑦𝑦‖ ≤ ‖(𝑥𝑥 − 𝑦𝑦) + 𝛼𝛼(𝑢𝑢 − 𝑣𝑣)‖ 

for all  𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥), 𝑣𝑣 ∈ 𝐴𝐴(𝑦𝑦). 

Conservely, if for every 𝛼𝛼 > 0, we have ‖𝑥𝑥 − 𝑦𝑦‖ ≤ ‖(𝑥𝑥 − 𝑦𝑦) + 𝛼𝛼(𝑢𝑢 − 𝑣𝑣)‖ for all  𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥), 𝑣𝑣 ∈
𝐴𝐴(𝑦𝑦), so by Theorem 4 there exists  𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥 − 𝑦𝑦) such that 〈𝑢𝑢 − 𝑣𝑣, 𝑗𝑗〉 ≥ 0. This means 𝐴𝐴 is an 
accretive operator.              ∎  
 
Example 6. An operator 𝐴𝐴:ℝ2 → 2ℝ2 defined by 

𝐴𝐴(�̅�𝑥) = {(𝑥𝑥2,−𝑥𝑥1)} for all �̅�𝑥 = (𝑥𝑥1, 𝑥𝑥2) ∈ ℝ2 

is accretive because for all �̅�𝑥 = (𝑥𝑥1,𝑥𝑥2),𝑦𝑦� = (𝑦𝑦1,𝑦𝑦2) ∈ ℝ2 and 𝛼𝛼 > 0 obtain 

�(�̅�𝑥 − 𝑦𝑦�) + 𝛼𝛼�𝐴𝐴(�̅�𝑥) − 𝐴𝐴(𝑦𝑦�)�� = ��(𝑥𝑥1,𝑥𝑥2) − (𝑦𝑦1,𝑦𝑦2)� + 𝛼𝛼�(𝑥𝑥2,−𝑥𝑥1)− (𝑦𝑦2,−𝑦𝑦1)�� 

= ‖(𝑥𝑥1 − 𝑦𝑦1 + 𝛼𝛼𝑥𝑥2 − 𝛼𝛼𝑦𝑦2), (𝑥𝑥2 − 𝑦𝑦2 − 𝛼𝛼𝑥𝑥1 + 𝛼𝛼𝑦𝑦1)‖ 

= ��(x1 − y1) + α(x2 − y2), (x2 − y2) + α(y1 − x1)�� 

= ��(x1 − y1) + α(x2 − y2)�2 + �(x2 − y2) + α(y1 − x1)�2 

= �(1 + α2)(x1 − y1)2 + (1 + α2)(x2 − y2)2 +  2α(x2 − y2)(x1 − y1 + y1 − x1) 

= �(x1 − y1)2 + (x2 − y2)2 + α2(x2−y2)2 +  α2(y1 − x1)2 

= �(1 + α2)(x1 − y1)2 + (1 + α2)(x2 − y2)2 

= �(1 + α2)((x1 − y1)2 + (x2 − y2)2) 

= �(1 + α2)�(x1 − y1)2 + (x2 − y2)2 

= �(1 + α2)‖�̅�𝑥 − 𝑦𝑦�‖ 

> ‖�̅�𝑥 − 𝑦𝑦�‖.                   ∎ 
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4. m-accretive Operators 

In this section, we study an accretive operator with some assumptions. Let 𝑋𝑋 be a real normed space 
and 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 be an accretive operator. For any 𝜆𝜆 > 0, we define an operator 𝐼𝐼 +
𝜆𝜆𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋, with 𝐼𝐼 is an identity operator.  

Definition 7. Let 𝑋𝑋 be a real normed space and 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋  be an accretive operator. 
Operator 𝐴𝐴 is said to be m-accretive if ℛ(𝐼𝐼 + 𝜆𝜆𝐴𝐴) = 𝑋𝑋, for any 𝜆𝜆 > 0. 

Example 8. Operator 𝐴𝐴:ℝ2 → 2ℝ2 defined on Example 6 is m-accretive operator. By Example 6, 𝐴𝐴 is 
accretive. Now, it remains to prove that for any 𝜆𝜆 > 0,  ℛ(𝐼𝐼 + 𝜆𝜆𝐴𝐴) = ℝ2. For every 𝜆𝜆 > 0, it is clear 
that ℛ(𝐼𝐼 + 𝜆𝜆𝐴𝐴) ⊆ ℝ2.  For every 𝑦𝑦� = (𝑦𝑦1,𝑦𝑦2) ∈ ℝ2 there exists  �̅�𝑥 = (𝑥𝑥1,𝑥𝑥2) ∈ ℝ2 such that 

𝑥𝑥1 = 𝑦𝑦1−𝜆𝜆𝑦𝑦2
1+𝜆𝜆2

 and 𝑥𝑥2 = 𝜆𝜆𝑦𝑦1+𝑦𝑦2
1+𝜆𝜆2

. 

Hence, we have 

(𝐼𝐼 + 𝜆𝜆𝐴𝐴)(�̅�𝑥) = �̅�𝑥 + 𝜆𝜆𝐴𝐴(�̅�𝑥) 

= �
𝑦𝑦1 − 𝜆𝜆𝑦𝑦2

1 + 𝜆𝜆2
,
𝜆𝜆𝑦𝑦1 + 𝑦𝑦2

1 + 𝜆𝜆2
� + 𝜆𝜆 �

𝜆𝜆𝑦𝑦1 + 𝑦𝑦2
1 + 𝜆𝜆2

,
−𝑦𝑦1 + 𝜆𝜆𝑦𝑦2

1 + 𝜆𝜆2
� 

= �
𝑦𝑦1 − 𝜆𝜆𝑦𝑦2 + 𝜆𝜆2𝑦𝑦1 + 𝜆𝜆𝑦𝑦2

1 + 𝜆𝜆2
,
𝜆𝜆𝑦𝑦1 + 𝑦𝑦2 − 𝜆𝜆𝑦𝑦1 + 𝜆𝜆2𝑦𝑦2

1 + 𝜆𝜆2 � 

= (𝑦𝑦1,𝑦𝑦2). 

Therefore ℝ2 ⊆ ℛ(𝐼𝐼 + 𝜆𝜆𝐴𝐴).  Hence, 𝐴𝐴 is m-accretive operator.          ∎  

Now are going to continue this section with some properties of m-accretive operator. These properties 
will be useful to extend our study in accretive operator and its application in applied mathematics. 

Theorem 9. Let 𝑋𝑋 be a real normed space and 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋  be a m-accretive operator. For 
every 𝑦𝑦 ∈ 𝑋𝑋, operator 𝐴𝐴 + 𝑦𝑦:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 defined by 

(𝐴𝐴 + 𝑦𝑦)(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) + 𝑦𝑦, 

for all 𝑥𝑥 ∈ 𝐷𝐷(𝐴𝐴), is  m-accretive.  

Proof. First, we are going to prove for all 𝑦𝑦 ∈ 𝑋𝑋, operator  𝐴𝐴 + 𝑦𝑦 is accretive. Because 𝐴𝐴 is accretive, 
for every 𝑥𝑥1, 𝑥𝑥2 ∈ 𝐷𝐷(𝐴𝐴) there exists 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥1 − 𝑥𝑥2) such that 〈𝑢𝑢 − 𝑣𝑣, 𝑗𝑗〉 ≥ 0, for all 𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥1),𝑣𝑣 ∈
𝐴𝐴(𝑥𝑥2). Hence 〈𝑢𝑢 + 𝑦𝑦 − (𝑣𝑣 + 𝑦𝑦), 𝑗𝑗〉 ≥ 0, for all 𝑢𝑢 + 𝑦𝑦 ∈ 𝐴𝐴(𝑥𝑥1) + 𝑦𝑦, 𝑣𝑣 + 𝑦𝑦 ∈ 𝐴𝐴(𝑥𝑥2) + 𝑦𝑦. Therefore 𝐴𝐴 +
𝑦𝑦 is accretive. 

Second, we are going to prove that ℛ�𝐼𝐼 + 𝜆𝜆(𝐴𝐴 + 𝑦𝑦)� = 𝑋𝑋, for all 𝜆𝜆 > 0.  Given any 𝜆𝜆 > 0 and 𝑧𝑧 ∈ 𝑋𝑋. 
Because 𝐴𝐴 is m-accretive, there exists 𝑥𝑥 ∈ 𝐷𝐷(𝐴𝐴) such that 𝑧𝑧 − 𝜆𝜆𝑦𝑦 ∈ (𝐼𝐼 + 𝜆𝜆𝐴𝐴)(𝑥𝑥). Hence, we have 

𝑧𝑧 ∈ 𝑥𝑥 + 𝜆𝜆𝐴𝐴(𝑥𝑥) + 𝜆𝜆𝑦𝑦 = �𝐼𝐼 + 𝜆𝜆(𝐴𝐴 + 𝑦𝑦)�(𝑥𝑥). 

This means, 𝑧𝑧 ∈ ℛ(𝐼𝐼 + 𝜆𝜆(𝐴𝐴 + 𝑦𝑦)), so 𝐴𝐴 + 𝑦𝑦 is m-accretive.        ∎ 

Before we continue this section, we need to recall a closed multivalued operator. Let 𝑋𝑋,𝑌𝑌 be real 
normed spaces. Operator 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 is closed if for any convergent sequence (𝑥𝑥𝑛𝑛) ⊂ 𝐷𝐷(𝐴𝐴) 
and for any convergent sequence (𝑦𝑦𝑛𝑛), where 𝑦𝑦𝑛𝑛 ∈ 𝐴𝐴(𝑥𝑥𝑛𝑛) for all 𝑛𝑛 ∈ ℕ, then  

lim
𝑛𝑛→∞

𝑥𝑥𝑛𝑛 ∈ 𝐷𝐷(𝐴𝐴)  𝑎𝑎𝑛𝑛𝑎𝑎 lim
𝑛𝑛→∞

𝑦𝑦𝑛𝑛 ∈ 𝐴𝐴 � lim
𝑛𝑛→∞

𝑥𝑥𝑛𝑛�. 

 
Theorem 10. Let 𝑋𝑋 be a real normed space. If operator 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 is m-accretive then A is 
closed.   
Proof. Let (𝑥𝑥𝑛𝑛) ⊂ 𝐷𝐷(𝐴𝐴) be a convergent sequence and𝑥𝑥0 ∈ 𝑋𝑋 be its limit. Let (𝑦𝑦𝑛𝑛) be convergent 
sequence, where 𝑦𝑦𝑛𝑛 ∈ 𝐴𝐴(𝑥𝑥𝑛𝑛) for all 𝑛𝑛 ∈ ℕ, and 𝑦𝑦0 ∈ 𝑋𝑋 be its limit. By Corollary 5, for every 𝑛𝑛 ∈
ℕ, 𝑥𝑥 ∈ 𝐷𝐷(𝐴𝐴) and 𝛼𝛼 > 0 we have 
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‖𝑥𝑥𝑛𝑛 − 𝑥𝑥‖ ≤ ‖(𝑥𝑥𝑛𝑛 − 𝑥𝑥) + 𝛼𝛼(𝑦𝑦𝑛𝑛 − 𝑦𝑦)‖, for all 𝑦𝑦 ∈ 𝐴𝐴(𝑥𝑥). 

Therefore, if 𝑛𝑛 → ∞ then for every 𝛼𝛼 > 0 we have 

‖𝑥𝑥0 − 𝑥𝑥‖ ≤ ‖(𝑥𝑥0 − 𝑥𝑥) + 𝛼𝛼(𝑦𝑦0 − 𝑦𝑦)‖ 

for all 𝑥𝑥 ∈ 𝐷𝐷(𝐴𝐴),𝑦𝑦 ∈ 𝐴𝐴(𝑥𝑥). By Theorem 4, there exists 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥0 − 𝑥𝑥) such that 〈𝑦𝑦0 − 𝑦𝑦, 𝑗𝑗〉 ≥ 0. Hence 

〈𝑦𝑦 − 𝑦𝑦0, 𝑗𝑗〉 ≤ 0.        (6) 

Because A is m-accretive then 𝑥𝑥0 + 𝑦𝑦0 ∈ ℛ(𝐼𝐼 + 𝐴𝐴). There exists 𝑥𝑥∗ ∈ 𝐷𝐷(𝐴𝐴) such that 𝑥𝑥0 + 𝑦𝑦0 ∈ (𝐼𝐼 +
𝐴𝐴)(𝑥𝑥∗). This means that there exists 𝑦𝑦∗ ∈ 𝐴𝐴(𝑥𝑥∗) such that 𝑥𝑥0 + 𝑦𝑦0 = 𝑥𝑥∗ + 𝑦𝑦∗. By Eq. (6), we have 
〈𝑥𝑥0 − 𝑥𝑥∗, 𝑗𝑗〉 = 〈𝑦𝑦∗ − 𝑦𝑦0, 𝑗𝑗〉 ≤ 0. Hence 𝑗𝑗 ∈ 𝐽𝐽(𝑥𝑥0 − 𝑥𝑥∗)  and consequently this result satisfies 

‖𝑥𝑥0 − 𝑥𝑥∗‖2 = 〈𝑥𝑥0 − 𝑥𝑥∗, 𝑗𝑗〉 ≤ 0, 
so ‖𝑥𝑥0 − 𝑥𝑥∗‖ = 0. This means 𝑥𝑥0 = 𝑥𝑥∗ and 𝑦𝑦0 = 𝑦𝑦∗. Therefore, 𝑥𝑥0 ∈ 𝐷𝐷(𝐴𝐴) and 𝑦𝑦0 ∈ 𝐴𝐴(𝑥𝑥0). Finally 
we have 

𝑦𝑦0 ∈ 𝐴𝐴 � lim
𝑛𝑛→∞

𝑥𝑥𝑛𝑛�. 
∎  

By Theorem 10, we derive the following result. 

Theorem 11. Let 𝑋𝑋 be a real normed space and 𝐵𝐵:𝑋𝑋 → 𝑋𝑋 be a continuous operator. If 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆
𝑋𝑋 → 2𝑋𝑋 be a m-accretive operator, then A+B is closed. 

Proof. Let (𝑥𝑥𝑛𝑛) ⊂ 𝐷𝐷(𝐴𝐴) be any convergent sequence and 𝑥𝑥∗ ∈ 𝑋𝑋 be its limit. Let (𝑦𝑦𝑛𝑛) be any 
convergent sequence, with  𝑦𝑦𝑛𝑛 ∈ (𝐴𝐴 + 𝐵𝐵)(𝑥𝑥𝑛𝑛) for all  𝑛𝑛 ∈ ℕ. There exists 𝑣𝑣𝑛𝑛 ∈ 𝐴𝐴(𝑥𝑥𝑛𝑛) such that 𝑦𝑦𝑛𝑛 =
𝑣𝑣𝑛𝑛 + 𝐵𝐵(𝑥𝑥𝑛𝑛). Because 𝐴𝐴 is m-accretive, by Theorem 10 we have 𝐴𝐴 is closed. Thus 𝑥𝑥∗ ∈ 𝐷𝐷(𝐴𝐴) and 

lim
𝑛𝑛→∞

𝑣𝑣𝑛𝑛 ∈ 𝐴𝐴(𝑥𝑥∗).                                                                                 (7) 

Hence we have 

lim
𝑛𝑛→∞

𝑦𝑦𝑛𝑛 = lim
𝑛𝑛→∞

�𝑣𝑣𝑛𝑛 + 𝐵𝐵(𝑥𝑥𝑛𝑛)� 

= lim
𝑛𝑛→∞

𝑣𝑣𝑛𝑛 + lim
𝑛𝑛→∞

𝐵𝐵(𝑥𝑥𝑛𝑛) 

= lim
𝑛𝑛→∞

𝑣𝑣𝑛𝑛 + 𝐵𝐵 � lim
𝑛𝑛→∞

𝑥𝑥𝑛𝑛� 

= lim
𝑛𝑛→∞

𝑣𝑣𝑛𝑛 + 𝐵𝐵(𝑥𝑥∗) 

Because of  Eq. (7), then 

lim
𝑛𝑛→∞

𝑦𝑦𝑛𝑛 ∈ 𝐴𝐴(𝑥𝑥∗) + 𝐵𝐵(𝑥𝑥∗) = (𝐴𝐴 + 𝐵𝐵)(𝑥𝑥∗). 

This means 𝐴𝐴 + 𝐵𝐵 is closed.              ∎ 
    

5. Conclusion 

Let 𝑋𝑋 be a real normed space. An operator 𝐴𝐴:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 → 2𝑋𝑋 is accretive if and only if for every 
𝑥𝑥,𝑦𝑦 ∈ 𝐷𝐷(𝐴𝐴),𝛼𝛼 > 0 obtains 

‖𝑥𝑥 − 𝑦𝑦‖ ≤ ‖(𝑥𝑥 − 𝑦𝑦) + 𝛼𝛼(𝑢𝑢 − 𝑣𝑣)‖ 

for all 𝑢𝑢 ∈ 𝐴𝐴(𝑥𝑥), 𝑣𝑣 ∈ 𝐴𝐴(𝑦𝑦). If ℛ(𝐼𝐼 + 𝜆𝜆𝐴𝐴) = 𝑋𝑋, for any 𝜆𝜆 > 0, then operator 𝐴𝐴 is said to be m-accretive. 
For an operator m-accretive A, operator A is closed and for every 𝑦𝑦 ∈ 𝑋𝑋, operator 𝐴𝐴 + 𝑦𝑦:𝐷𝐷(𝐴𝐴) ⊆ 𝑋𝑋 →
2𝑋𝑋 defined by 

(𝐴𝐴 + 𝑦𝑦)(𝑥𝑥) = 𝐴𝐴(𝑥𝑥) + 𝑦𝑦, 

for all 𝑥𝑥 ∈ 𝐷𝐷(𝐴𝐴), is  m-accretive. Furthermore, if  𝐵𝐵:𝑋𝑋 → 𝑋𝑋 be a continuous operator, then A+B is 
closed.     
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