STUDI PELAYANAN AIR MINUM DALAM RANGKA MENCAPAI TARGET MDGs DI KOTA PALU

Zeffitni, Triyanti Anasiru, Asnah Abu

*) Jurusan Teknik Sipil, Fakultas Teknik Untad.

Kampus Bumi Tadulako, Jl. Sokarno Hatta Km.9. Palu, Sulawesi Tengah Email: zefitni_04@yahoo.com

Abstrak

Target MDGs pada tahun 2015 sekitar 68,9% penduduk perkotaan terlayani jaringan air minum dan pada tahun 2025 ditargetkan 100% kawasan perkotaan terlayani oleh air minum. Hal tersebut juga menjadi fokus utama bagi pemerintah Kota Palu. Tujuan penelitian ini: 1). mengkaji potensi airtanah bebas dan tertekan berdasarkan berdasarkan karakteristik airtanah pada setiap satuan hidromorfologi dan hidrogeologi, dan 3). menyusun pola arahan spasial manajemen pemanfaatan airtanah untuk kebutuhan domestik di Kota Palu. Metode Penelitian: Model analog relasi dan numerik, dengan mengkombinasikan model sistem akuifer dan sistem informasi geografi lingkungan fisik airtanah. Hasil Penelitian: 1). Dengan menggunakan parameter luasan area, tebal akuifer dan hasil jenis, ketersediaan airtanah statis di CAT Palu berjumlah ± 19.552.823, 80 m³. Agihan airtanah statis di bagian timur sejumlah 13.239.480,76 m³ dan di bagian barat sejumlah 6.313.343,04 m³, 2). Kebutuhan air bersih di daerah perkotaan (Kecamatan Palu Selatan) pada tahun 2025 diperkirakan paling tinggi dibandingkan daerah lainnya.

Kata Kunci: airtanah, cekungan, air minum

Pendahuluan

Airtanah di Cekungan Airtanah Palu (CAT Palu) merupakan salah satu fenomena fisik lingkungan (physical enviroment) yang memerlukan proteksi kualitas airtanah. Keberadaan CAT Palu erat kaitannya dengan struktur graben di Cekungan Palu, yaitu Sesar Palu. Secara administratif CAT Palu berada di Provinsi Sulawesi Tengah dan meliputi wilayah Kota Palu (sebagai ibukota Provinsi Sulawesi Tengah), Kabupaten Donggala, dan Sigi. Dengan demikian airtanah di CAT Palu merupakan salah satu sumber pemasok air bersih bagi penduduk di Kota Palu serta di sebagian Kabupaten Donggala dan Sigi. Permasalahan kerentanan airtanah dalam manajemen pemanfaatan air bagi penduduk Kota Palu merupakan permasalahan urgen yang perlu dicarikan solusinya.

Hasil penelitian serta survei lapangan dan wawancara terhadap pihak PDAM Uwe Lino Kabupaten Donggala, PDAM Kota Palu, dan Bagian Pendayagunaan Airtanah dan Pengembangan Air Baku (P₂AB) - Dinas Pekerjaan Umum Provinsi Sulawesi Tengah (2014) bahwa salah satu faktor penyebab kurang optimalnya manajemen dan kebijakan pemanfaatan airtanah di Kota Palu adalah kurangnya data akurat tentang ketersediaan airtanah secara kualitas dan kuantitas. Pada beberapa kasus hanya berdasarkan informasi dari masyarakat setempat, sehingga data potensi airtanah hanya bersifat perkiraan semata.

Villumsen, dkk (1983) dalam Vrba (1994) berpendapat bahwa kerentanan airtanah merupakan suatu keadaan yang menunjukan sistem airtanah yang sangat sensitif akibat dari kegiatan manusia atau kondisi alami. Kerentanan airtanah ditentukan oleh beberapa faktor hidrogeologi, yaitu karakterisik akuifer, kondisi tanah dan material geologi.Untuk menggambarkan kerentanan airtanah dapat dilakukan melalui pemetaan yang menunjukan secara spesifik tata guna lahan dan kontaminan yang bersifat spasial temporal.

Kajian terhadap potensi airtanah dan pemanfaatan air untuk domestik sangat penting dilakukan mengingat air merupakan salah satu kebutuhan esensial bagi manusia. Keterdapatan airtanah yang bersifat spasial dan temporal, telah menyebabkan posisinya dari material yang bersifat bebas (free goods) menjadi material yang bernilai ekonomis (economic goods). Potensi sumberdaya air dikelompokkan menjadi 3 wilayah, yaitu kelompok: berpotensi rendah, sedang dan tinggi.Pada prinsipnya setiap wilayah potensi airtanah harus memuat informasi tentang kedudukan muka airtanah, besarnya debit sumur yang mampu dihasilkan dan kualitas airtanah (Pusat Lingkungan Geologi, 2007). Reed (2008) menambahkan bahwa air merupakan kebutuhan dasar bagi manusia. Menentukan berapa banyak kebutuhan merupakan salah satu langkah untuk dapat menyediakan air sesuai kebutuhan. Prediksi kebutuhan air dapat dihitung setiap satuan waktu tergantung pada fokus permasalahan. Jangka waktu prediksi terbagi atas 3 kategori, yaitu: skala jangka pendek <15 tahun, skala jangka menengah 15-25 tahun, dan skala jangka panjang > 25-50 tahun. Perhitungan prediksi berdasarkan angka pertumbuhan penduduk dengan menggunakan **Metode Bunga Berganda**:

ISSN: 2459-9727

 $P_t = P_0 (1+r)^n$ (1)

keterangan:

 $\begin{array}{ll} P_t & : jumlah \ penduduk \ pada \ tahun \ yang \ diprediksikan \\ P_0 & : jumlah \ penduduk \ yang \ akan \ diprediksikan \\ r & : rata - rata \ laju \ pertumbuhan \ penduduk \\ n & : jumlah \ tahun \ yang \ akan \ diprediksikan \end{array}$

Jumlah kebutuhan air sangat ditentukan oleh tingkat pola kehidupan pemakainya. Pada dasarnya standar kebutuhan minimal individu adalah 40-70 liter/hari, belum termasuk kebutuhan yang dipengaruhi oleh faktor kondisi sosial ekonomi. Jumlah yang lebih tepat tergantung pada berbagai variabel (budaya dan iklim) yang harus dinilai dan dipertimbangkan (*The Sphere Project*, 2004). Beberapa kota besar di Indonesia, standar kebutuhan air berkisar 100 - 150 liter/orang/hari dan daerah perdesaan berkisar < 40 liter/orang/hari. Dinas Energi dan Sumberdaya Mineral (2001) menetapkan jumlah kebutuhan air bersih 150 liter/orang/hari untuk daerah perkotaan dan 80 liter/orang/hari untuk daerah perdesaan. Pemanfaatan air bersih untuk keperluan domestik di Indonesia, rata – rata 60-150 liter/orang/hari. Angka ini berbeda dari satu tempat dengan tempat lain.

Bahan dan Metode Penelitian

Berdasarkan pertimbangan fenomena agihan spasial airtanah yang lebih kompleks di CAT Palu, maka penelitian ini lebih difokuskan di CAT Palu Provinsi Sulawesi Tengah. Secara administratif mencakup sebagian Kota Palu (Ibukota Provinsi Sulawesi Tengah), Kabupaten Donggala dan Sigi. Teknik pengambilan sampel airtanah dilakukan dengan cara tiga tingkat (*three stage sampling*). Metode Penelitian: Model analog relasi dan numerik, dengan mengkombinasikan model sistem akuifer dan sistem informasi geografi lingkungan fisik airtanah.

Hasil dan Pembahasan

Perhitungan ketersediaan airtanah dengan metode statis dengan asumsi bahwa airtanah dianggap diam dan dihitung berdasarkan parameter: luasan area, tebal akuifer dan hasil jenis (specific yield) menurut komposisi materi penyusun akuifer dan luas masing - masing zona potensi airtanah. Parameter luasan area diperoleh dengan cara membagi CAT Palu atas bagian barat dan timur dengan luasan \pm 474.600 m². Karena keterbatasan data maka parameter tebal akuifer dalam penelitian ini dihitung berdasarkan nilai transmisivitas akuifer. Pada prinsipnya nilai transmisivitas merupakan fungsi yang berbanding lurus antara permeabilitas dengan tebal akuifer. Dengan demikian tebal akuifer di CAT Palu yaitu rata - rata \pm 83,24 meter dengan agihan di bagian timur \pm 90,17 meter sedangkan di bagian barat + 76,32 meter.

Parameter lain untuk menentukan potensi airtanah dengan pendekatan statis adalah hasil jenis. Pada akuifer tidak tertekan nilai koefisien timbunan (S) sama dengan hasil jenis (Sy: *spesific yield*). Berdasarkan nilai hasil jenis dapat ditentukan jenis akuifer dan jumlah ketersediaan airtanah. Agihan nilai hasil jenis merata di seluruh CAT, dengan nilai rata – rata sejumlah 47,65%. Nilai hasil jenis ini termasuk tinggi jika dibandingkan dengan referensi nilai hasil jenis untuk endapan aluvium dan sedimen klastika (20-30%). Di CAT bagian timur nilai hasil jenis rata – rata 47,50% sedangkan di bagian barat, rata – rata 51%. Selanjutnya dengan menggunakan parameter luasan area, tebal akuifer dan hasil jenis, ketersediaan airtanah statis di CAT Palu berjumlah ± 19.552.823,80 m³. Agihan airtanah statis di bagian timur sejumlah 13.239.480,76 m³ dan di bagian barat sejumlah 6.313.343,04 m³.

-	Γabel 1.	Ketersediaa	an Airtanah Stat	is di CAT	Palu		

No	Lokasi		Geologi		Geologi Luas Tebal		Tebal	Sy	Ketersediaan
	Agihan	Bentuklahan	Litologi	Formasi	(m^2)	Akuifer (m)		Airtanah (m³)	
1	CAT Bagian Timur								
	Palu Timur	Dataran Aluvial	CLY	Aluvium	312,400.00	90.17	0.47	13,239,480.76	
	Palu Selatan	Perbukitan Denudasional	GRV	Pakuli					
	Dolo		SLT						
	Biromaru		SCH						
	Gumbasa		SND						
			SND.CLY						
			SND.GRV						
			CLY.SND						
			GRV.SND						
2	CAT Bagian Barat								
	Palu Barat	Dataran Aluvial	GRA	Aluvium	162,200.00	76.32	0.51	6,313,343.04	
	Palu Selatan	Perbukitan Denudasional	GRV	Pakuli					
	Marawola		SND						
	Dolo Barat		SCH						
	Dolo Selatan		SLT						
			SND.CLY						
			SND.GRV						
			GRA.DIO						
	Jumlah			474,600.00			19,552,823.80		

ISSN: 2459-9727

Kebutuhan air bersih untuk domestik dibedakan atas kebutuhan berdasarkan standar dan hasil penelitian. Perkiraan kebutuhan air untuk beberapa tahun yang akan datang sangat diperlukan. Menentukan berapa banyak kebutuhan merupakan salah satu langkah untuk dapat menyediakan air sesuai kebutuhan. Jangka waktu prediksi terbagi atas 3 kategori, yaitu: skala jangka pendek <15 tahun, skala jangka menengah 15-25 tahun, dan skala jangka panjang > 25-50 tahun. Penelitian ini menggunakan prediksi jangka pendek yaitu 7 tahun berdasarkan data tahun 2013 sampai dengan tahun 2025 sesuai dengan RTRW Kota Palu. Perhitungan prediksi berdasarkan angka pertumbuhan penduduk dengan menggunakan Metode Bunga Berganda. Analisis kebutuhan air untuk domestik berpedoman pada standar yang ditetapkan oleh Dinas Energi dan Sumberdaya Mineral (2001) maka untuk wilayah penelitian ditetapkan: daerah perkotaan, yaitu 100 liter/orang/hari.

Tabel 2. Prediksi Kebutuhan Air Bersih Tahun 2025

Kecamatan		Jumlah	Kebutuhan	Prediksi
		Penduduk	Air Bersih	Tahun 2025
			(m3/thn)	(m3/thn)
01 Palu Barat		50,751	1,852,412	22,228,938
02 Tatanga		44,506	1,624,469	19,493,628
03 Ulujadi		28,543	1,041,820	12,501,834
04 Palu Selatan		69,087	2,521,676	30,260,106
05 Palu Timur		54,713	1,997,025	23,964,294
06 Mantikulore		67,603	2,467,510	29,610,114
07 Palu Utara		21,317	778,071	9,336,846
08 Tawaeli		19,761	721,277	8,655,318
Kota Palu	2013	356,279	13,004,184	156,050,202
	2012	347,856	12,696,744	152,360,928
	2011	342,754	12,510,521	150,126,252
	2010	336,532	12,283,418	147,401,016
	2009	313,179	11,431,034	137,172,402

Sumber: Hasil Analisis, 2014

Berdasarkan data aktual tahun 2013, maka agihan spasial pemanfaatan air untuk domestik di Kota Palu dibagi atas 3 klas pemanfaatan, yaitu: klas rendah (<1.000.000 m³/tahun), klas sedang (1.000.000 – 2.500.000 m³/tahun) dan klas tinggi (> 2.500.000 m³ /tahun). Pemanfaatan tinggi meliputi Kecamatan Palu Selatan dengan jumlah pemanfaatan sejumlah 2.521.676 m³ /tahun dan pada tahun 2025 diperkirakan mencapai 30.260.106 m³ /tahun dengan asumsi jumlah penduduk tetap. Jika diperkirakan pertumbuhan penduduk adalah 2,00% / tahun dan kebutuhan air bersih 100 liter / orang / hari, maka pada tahun 2025 jumlah penduduk Kota Palu sekitar 712.558 orang, dengan kebutuhan air bersih 71.255.800 liter/ hari.

Tabel 3. Klas Pemanfaatan Air di Kota Palu

Kecamatan	Jumlah Penduduk	Kebutuhan Air Bersih	Klas Pemanfaatan (m³/tahun)
01 Palu Barat	50,751	1,852,412	sedang
02 Tatanga	44,506	1,624,469	sedang
03 Ulujadi	28,543	1,041,820	sedang
04 Palu Selatan	69,087	2,521,676	tinggi
05 Palu Timur	54,713	1,997,025	sedang
06 Mantikulore	67,603	2,467,510	tinggi
07 Palu Utara	21,317	778,071	rendah
08 Tawaeli	19,761	721,277	rendah

Sumber: Hasil Analisis, 2014

Pola arahan spasial pemanfaatan airtanah untuk domestik didasarkan pada neraca kesetimbangan antara ketersediaan dan kebutuhan (*supply and demand*). Penentuan pola arahan spasial pemanfaatan airtanah untuk kebutuhan domestik di Kota Palu, dengan mempertimbangkan konsep dan strategi kepadatan penduduk seperti yang tertuang dalam RTRW Kota Palu tahun 2006 – 2025 (Bappeda Kota Palu, 2006). Konsep yang diambil adalah dengan membagi tiga kawasan perkotaan menjadi wilayah: pusat kota, daerah transisi, dan daerah pinggiran. Berdasarkan perbedaan karakteristik airtanah maka CAT Palu dikelompokkan atas beberapa klas zona penurapan airtanah sebagai berikut.

Tabel 4. Klas Zona Penurapan Pemanfaatan Air di Kota Palu

	Jumlah		Klas Pemanfaatan	Zona
Kecamatan	Penduduk	Air Bersih	(m³/tahun)	Penurapan
01 Palu Barat	50,751	1,852,412	sedang	Zona II
02 Tatanga	44,506	1,624,469	sedang	Zona II
03 Ulujadi	28,543	1,041,820	sedang	Zona II
04 Palu Selatan	69,087	2,521,676	tinggi	Zona I
05 Palu Timur	54,713	1,997,025	sedang	Zona II
06 Mantikulore	67,603	2,467,510	tinggi	Zona I
07 Palu Utara	21,317	778,071	rendah	Zona III
08 Tawaeli	19,761	721,277	rendah	Zona III

Sumber: Hasil Analisis, 2014

V. KESIMPULAN DAN SARAN

- Dengan menggunakan parameter luasan area, tebal akuifer dan hasil jenis, ketersediaan airtanah statis di CAT Palu berjumlah + 19.552.823, 80 m³. Agihan airtanah statis di bagian timur sejumlah 13.239.480,76 m³ dan di bagian barat sejumlah 6.313.343,04 m³.
- 2. Kebutuhan air bersih di daerah perkotaan (Kecamatan Palu Selatan) pada tahun 2025 diperkirakan paling tinggi dibandingkan daerah lainnya.

DAFTAR PUSTAKA

Dinas Energi dan Sumberdaya Mineral. 2001. *Penataan Zona Konservasi Air Bawah Tanah di Kabupaten Nganjuk. Laporan Akhir*. Dinas Energi dan Sumberdaya Mineral Provinsi Jawa Timur Kerjasama dengan Fakultas Geografi UGM. Yogyakarta.

Pusat Lingkungan Geologi. 2007. *Kumpulan Panduan Teknis Pengelolaan Airtanah*. Pusat Lingkungan Geologi. Bandung.

Reed, B.J. 2008. *Jumlah Air Minimal Yang Dibutuhkan Untuk Keperluan Rumah Tangga*. WHO Regional Office For South East Asia. New Delhi. Diterima 15 Juli 2009, dari http://www.whosea.org.

The Sphere Project. 2004. *Humanitarian Charter and Minimum Standards in Disaster Response*. The Sphere Project: Geneva, Switzerland. Diterima 27 Juni 2009, dari http://www.sphereproject.org.

Vrba, J and Zoporozee, A. (1994). Guidebook of Mapping Groundwater Vulnerability. International Contributions to Hydrogeology. Volume. 16, 1994.