ANALISIS FMEA UNTUK IDENTIFIKASI TERJADINYA BATU BARA *REJECT* DAN *LOSSES*

Siti Nandhiroh¹, Rahmattullah²

1,2 Jurusan Teknik Industri, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos 1 Pabelan Kartasura 57102 Telp 0271 717417 Email: Siti. Nandiroh @ums.ac.id

Abstrak

Batu bara merupakan elemen terpenting dalam Industri manufatur semen. Fungsi batu bara sebagai bahan bakar dalam proses produksi semen menjadikan batu bara sebagai bottleneck dalam serangkaian proses produksi semen. Kualitas dan kuantitas batu bara merupakan syarat mutlak yang harus dipenuhi oleh sebuah Industri manufaktur semen. Saat ini pada PT. Semen Padang diketahui bahwa penurunan pada kualitas dan kuantitas batu bara terjadi secara fluktuatif dari setiap bulan. Kondisi tersebut tentunya menimbulkan kerugian secara finansial dan non finansial terhadap PT.Semen Padang, Identifikasi untuk analisis terjadinya batu bara reject dan losses perlu dilakukan secara komprehensif dari supplychain awal hingga supplychain akhir dari batu bara tersebut. Metode FMEA (Failure Mode and Effect Analysis) diterapkan untuk mengidentifikasi timbulnya batu bara reject dan losses. Identifikasi penyebab terjadinya kegagalan tercapainya kualitas dan kuantitas batu bara di PT Semen Padang dapat diketahui dari nilai Risk Priority Number. Metode FMEA diterapkan dalam identifikasi permasalahan penurunan kualitas dan kuantitas batu bara dikarenakan metode FMEA menggunakan tiga variabel dalam perhitungan Risk Priorirty Number. Ketiga variabel tersebut ialah severity, occurence dan detect.Hasil akhir dari identifikasi penurunan kualitas dan kuantitas batu bara di PT Semen Padang yaitu terjadinya batu bara yang terbakar, terbatasnya area stockpile, kegagalan penerapan quality control oleh vendor, batu bara mengalami oksidasi, dan terjadinya lot batubara longsor di stockpile. Upaya solutif untuk mengatasi penyebab dari penurunan kualitas dan kuantitas batu bara di PT Semen Padang ialah dengan melakukan penyusunan skala prioritas vendor, perubahan susunan lot batu bara, penggunaan larutan polymer P.I.C dan pengawasan area stockpile secara berkala.

Kata kunci: Batu Bara ,FMEA, Kualitas

Pendahuluan

Persaingan dunia industri yang begitu ketat saat ini menuntut setiap industri manufaktur untuk menerapkan kualitas di setiap lini perusahaan. Tanpa terkecuali di departemen pegadaan bahan baku curah. Salah satu bahan baku curah yang menjadi fokus dalam pemenuhan kualitas di PT Semen Padang yaitu kualitas bahan baku batu bara. Peran dan fungsi batu bara sebagai bahan bakar dalam industri manufaktur semen menjadikan pemenuhan kualitas dan kuantitas batu bara sebagai syarat wajib yang harus dipenuhi.

Saat ini data Departemen Pengadaan PT Semen Padang menunjukkanjumlah batu bara *reject* dan *losses* terjadi secara fluktuatif disetiap bulan. Batu bara merupakan bahan bakar tunggal, termahal dan terpenting dalam proses pembuatan semen dibanding dengan bahan baku lain, sehingga keberadaan batu bara *reject* dan *losses* pada *stockpile* akan berdampak pada kerugian finansial dan non finansial seperti kapasitas *stockpile* yang berkurang, pencemaran lingkungan dan terhambatnya pengembangan *stockpile*. Meskipun faktor yang menyebabkan rendahnya produktivitas suatu industri manufaktur cukup banyak, namun kualitas dan kuantitas bahan baku memiliki presentase terbesar dibanding faktor lain. Pernyataan tersebut senada dengan (Liker, 2005)yang menyatakan bahwa kualitas akan selalu berbanding lurus dengan produktivitas.

Penelitian ini bertujuan untuk mengidentifikasi penyebab kegagalan dominan dalam pencapaian kualitas dan kuantitas batu bara dengan menggunakan Metode FMEA (*Failure Mode and Effect Analysis*). Menurut McderMott dan Beauregard (1996:40) metode FMEA adalah metode yang tepat untuk mengidentifikasi penyebab permasalahan dan mencegah timbulnya permasalahan dalam suatu sistem. Sedangkan *output* akhir dari penelitian ini ialahdirumuskan sejumlah usulan perbaikan untuk meminimalisir terjadinya batu bara *reject* dan *losses*

Bahan dan metode penelitian

Metode yang diterapkan dalam mengidentifikasi jenis kegagalan dominan pada pemenuhan kualitas dan kuantitas batu bara di PT Semen Padang ialah metode FMEA (*Failure Mode and Effect Analysis*. Salah satu tipe metode FMEA, yaitu FMEA *system* dianggap kompatible apabila diterapkan dalam suatu indusrti manufaktur dikarenakan tipe metode FMEA ini berfokus pada sistem secara global.Sedangkan Menurut (Mourbay, 1997), FMEA ialah sebuah metode yang digunakan untuk melakukan pengidentifikasian bentuk kegagalan yang memiliki kemungkinan untuk berpotensi menjadi penyebab kegagalan fungsi serta untuk memastikan pengaruh kegagalan dari setiap bentuk kegagalan.

FMEA (Failure Mode and Effect Analysis).adalah suatu metodologi terstruktur untuk mencegah dan mengkoreksi timbulnya kegagalan yang diprediksi akan diterima konsumen atau user. Metode ini berperan dengan cara menganalisis penyebab timbulnya kegagalan pada suatu proses yang dibuktikan dengan spesifikasi yang ditentukan tidak terpenuhi. FMEA (Failure Mode and Effect Analysis) diterapkan untuk mengidentifikasi dan menganalisis segala kegagalan yang potensial terjadi pada suatu sistem. Metode FMEA (Failure Methods Effect Analysis) juga digunakan untuk mengajukan upaya perbaikan untuk mengatasi permasalahan kegagalan yang paling dominan yang diidentifikasi dari nilai RPN (Risk Priority Number).

Penentuan prioritas dari suatu bentuk kegagalan akan melibatkan sejumlah perosnel, maka personel yang terlibat dalam penerapan FMEA harus mendefinisikan terlebih dahulu mengenai severity, occurence, detection yang apabila dikalkulasikan dengan perkalian matematis akan diperoleh nilai Risk Priority Number. FMEA biasa diterapkan dalam tahap konseptual dan awal design dari suatu sistem dengan tujuan untuk menjabarkan semua probabilitas timbulnya kegagalan dan mengajukan upaya perbaikan yang tepat untuk meminimalisir semua kegagalan-kegagalan potensial tersebut. FMEA memiliki tiga variabel atau indeks untuk menentukan Risk Priority Number. Adapun penjelasan dari tiga indeks tersebut yaitu sebagai berikut:

a. Severity

Severity adalah menentukan tingkat keparahan dari dampak yang diterima terutama berkaitan pada kualitas. Tingkat keparahan tersebut direpresentasikan dalam bentuk skala 1-10 dengan kriteria penilaian seperti pada tabel 1 dibawah ini.

Tabel 1 Skala Penilaian Severity

Akibat	Skala	Kriteria					
Tidak ada akibat	1	Tidak ada efek terhadap kualitas					
Sangat sedikit Akibatnya	2	Karakteristik kualitas batu bara tidak terganggu					
Sedikit akibatnya	3	Akibatnya kecil ke kualitas batu bara					
Akibatnya kecil	4	Kualitas batu bara sedikit mengalami gangguan					
Cukup berakibat	5	Kegagalan mengakibatkan beberapa ketidakpuasan pada kualitas batu bara					
Cukup berakibat	6	Kegagalan mengakibatkan ketidaknyamanan					
Akibatnya besar	7	Kualitas batu bara tidak memuaskan					
Ekstrim	8	Kualitas batu bara sangat tidak memuaskan					
Serius	9	Berpotensi menimbulkan akibat buruk pada proses pembakaran dalam pembuatan semen					
Beresiko	10	Efek dari kegagalan batu bara berakibat tidak sempurnanya proses pembakaran					

Sumber: (Nursanti dan Aji, 2013)

b. Occurence

Occurence merupakan probabilitas dari terjadinya suatu kegagalan pada suatu proses yang penilaiannya menggunakan skala 1 -10. Tingkat probabilitas timbulnya kegagalan pada suatu proses akan disajikan dengan kriteria dari probabilitas tersebut. Adapun kriteria dari tingkat probabilitas timbulnya kegagalan yaitu diinformasikan pada tabel 2 dibawah ini.

Tabel 2 Skala Penilaian Occurence

Akibat	Skala	Kriteria	
Tidak Pernah	1	Sejarah menunjukkan tidak ada kegagalan	
Jarang	2	Kemungkinan kegagalan sangat langka	
Sangat kecil	3	Kemungkinan kegagalan sangat sedikit	
Sedikit sekali	4	Beberapa kemungkinan kegagalan	
Rendah	5	Kemungkinan kegagalan ada	
Sedang	6	Kemungkinan kegagalan sedang	
Cukup tinggi	7	Kemungkinan kegagalan cukup tinggi	
Tinggi	8	Tingginya jumlah kegagalan	
Sangat tinggi	9	Jumlah yang sangat tinggi dari kemungkinan kegagalan	
Pasti	10	Kegagalan hampir pasti ada	

Sumber: (Nursanti dan Aji, 2013)

c. Detection

Detection adalah pengukuran terhadap perfomansi pengkontrolan yang dapat mendeteksi terjadinya kegagalan pada suatu proses. Adapun informasi mengenai skala penilaian detection dan kriteria dari nilai skala tersebut akan disajikan melalui tabel 3 dibawah ini.

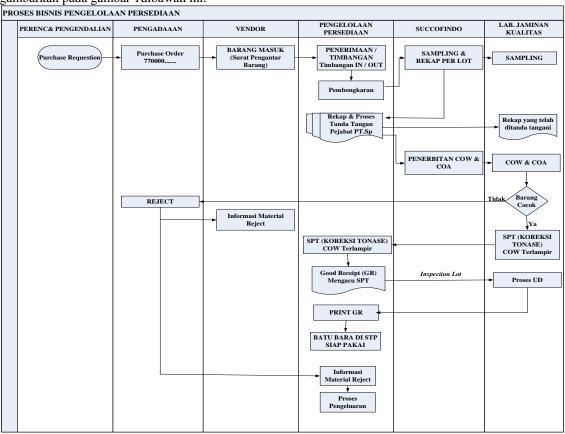
Tabel 3 Skala Penilaian Detection

Akibat	Skala	Kriteria					
Hampir pasti	1	Kontrol pasti mendeteksi					
Sangat tinggi	2	Kontrol hampir pasti mendeteksi					
Tinggi	3	Kontrol mempunyai peluang yang besar untuk mendeteksi					
Cukup tinggi	4	Kontrol mungkin mndeteksi cukup tinggi					
Sedang	5	Kontrol mungkin mendeteksi sedang					
Rendah	6	Kontrol mungkin mendeteksi rendah					
Sedikit	7	Kontrol mempunyai peluang yang sangat kecil untuk mendeteksi					
Sangat sedikit	8	Kontrol mempunyai peluang yang sangat kecil untuk mendeteksi					
Jarang	9	Kontrol mungkin tidak mendeteksi					
Mustahil	10	Kontrol pasti tidak mendeteksi					

Sumber: (Nursanti dan Aji, 2013)

Penerapan metode FMEA ini melibatkan sejumlah asumsi yaitu:

- 1. Pada penelitian ini dilakukan analisis ANOVA dikarenakan ketiga variabel dalam perolehan nilai RPN yaitu *severity, occurence* dan *detect* memiliki tingkat kepentingan yang sama. Disisi lain analisis A
- 2. NOVA dilakukan untuk meminimalisir unsur subjektifitas responden dalam penentuan nilai RPN.
- 3. Pada penelitian ini dilakukan *purposive sampling* untuk membentuk *forum group discussion*, sehingga tes homogenitas yang terdapat pada analisis ANOVA diabaikan.


Hasil dan Pembahasan

Metode FMEA (Failure Methods Effect Analysis) diterapkan sebagai upaya before- the – event dalam upaya menghilangkan, mencegah dan meminimalisir timbulnya kemungkinan kegagalan dari penyebab dalam suatu sistem untuk tidak terulang dimasa depan. Sedangkan Menurut Foster (2010), penggunaan metode FMEA akan melalui sembilan tahapan untuk mengidentifikasi permasalahan yang terjadi. Kesembilan tahapan tersebut yaitu mengidentifikasi setiap proses didalam suatu sistem, mengidentifikasi fungsi dari proses, mengidentifikasi jenis kegagalan yang terjadi, menentukan tingkat keparahan, menetapkan kemungkinan terjadinya kegagalan, mengestimasi kegagalan yang ditemukan dan menentukan nilai risk priority number terbesar. Adapun implementasi

dari tahapan metode FMEA terhadap permasalahan timbulnya batu bara *reject* dan *losses* di PT Semen Padang yaitu sebagai berikut:

a. Identifikasi Proses Pemesanan Batu Bara

Proses bisnis transaksi batu bara melibatkan 3 pihak yaitu pihak PT Semen Padang (selaku pemesan), Sucofindo (Lembaga Penguji Batu Bara) dan Vendor (selaku pemasok). Hubungan dari ketiga pihak tersebut akan digambarkan pada gambar 1 dibawah ini.

Gambar 1 Proses Bisnis Pemesanan Batu Bara

Pada gambar diatas dapat diketahui uraian aktivitas yang dilakukan dalam *supply chain* pemesanan hingga pemakaian batu bara. Sejumlah aktivitas tersebut dilakukan oleh pihak PT Semen Padang, succofindo dan pemasok. Melalui sejumlah aktivitas tersebut dapat diidentifikasi jenis kegagalan maupun modus kegagalan potensial yang dapat terjadi. Adapun uraian penjelasan mengenai jenis kegagalan dan kemungkinan penyebab kegagalan potesial lain dari rangkaian *supplychain* pemesanan batu bara yaitu melalui poin b dibawah ini

b. Identifikasi Jenis Kegagalan dan Potensi Kegagalan

Penjelasan mengenai jenis kegagalan potensial dalam suatu rangkaian supply chain pemesanan hingga pemakaian batu bara dapat diketahui melalui tabel 4dibawah ini.

Tabel 4 Identifikasi Jenis Kegagalan Pemenuhan Kualitas Batu Bara

Aktivitas	Modus Kegagalan Potensial	Simbol Penyebar		Effect	Control	
Pemesanan	Kesalahan dalam menentukan jumlah persediaan	E1	Disebabkan oleh faktor musiman (ex : lebaran, tahun baru, libur nasional)	Terjadinya Pemesanan batu bara berlebih (penumpukan batu bara)	Melihat kondisi dan kapasitas area stockpile	
	Kesalahan prosedur penambangan		Minim pengetahuan penanganan batu bara	Berkurangnya kualitas batu bara	Penekanan dan	
Penambangan	Salah melakukan sampling	Е3	Sampel yang diambil tidak memenuhi syarat	Salah mengidentifikasi status kualitas batu bara	efektifitas sanksi penalti pada klausul kontrak pembelian batu	
	Quality Control Tidak diterapkan	1 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Berkurangnya kualitas batu bara	bara	

	Rusaknya lapisan		Terkikis alat material	Berkurangnya	
	clearing batu bara	E5	handling	kualitas batu bara	
	Batu bara terkontaminasi tanah	E6	Minim pengetahuan penanganan batu bara	Berkurangnya kualitas batu bara	
	Mengabaikan isi kontrak	E7	Kesengajaan vendor mengulur waktu dan Pemaksaan pembelian batu bara secara halus	Terjadinya kerugian waktu, biaya dan tempat untuk PT Semen Padang	
	Jumlah Truck tidak optimal	E8	Kurangnya ketersediaan truck	Keterlambatan pemenuhan persediaan	
	Batu bara mengalami oksidasi	E9	Terlalu lama dalam perjalanan	Berkurangnya kualitas batu bara	Penekanan dan
Pengiriman	Batu bara tercecer di perjalanan	E10	Jalanan transportasi rusak	Kurangya kuantitas batu bara	efektifitas sanksi penalti pada klausul kontrak
	Keterlambatan Pengiriman	E11	Terjadinya kemacetan lalu lintas , kerusakan truck	Keterlambatan pemenuhan persediaan	pembelian batu bara
	Salah melakukan pendataan	E12	Salah input SAP	Terjadinya misskomunikasi dokumen	Penggunaan notification
Penerimaan	Salah memberi instruksi lokasi pembongkaran	E13	Human Error	Kesalahan lokasi pembongkaran batu bara	Menjalin koordinasi dengan PIC pembongkaran batu bara
	Tidak rapi dalam penyusunan	E14	Minim pengetahuan handling dan batu bara	Prosentase batu bara losses	Penyusunan lot batu bara dilakukan secara rapi
	Perbedaan Hasil Uji	E15	Perbedaan waktu pengambilan sampel	Sistem FIFO gagal diterapkan	Perbandingan hasil uji
	Menerima batu bara reject	E16	Misskomunikasi atau kesalahan informasi	Kerugian finansial	Menolak batu bara reject
Penyimpanan	Menumpuknya batu bara reject	E17	Kesengajaan vendor mengulur waktu dan pemaksaan pembelian batu bara secara halus	Kekurangan area stockpile batubara	Melakukan negosiasi downgrade batu bara
1 enympanan	Drynase stockpile buruk	E18	Kurangnya maintenance stockpile	Kandungan air batubara meningkat dan lot mudah longsor	Perawatan dynase stockpile secara berkala
	Batu bara terbakar	E19	Batu bara diletakkan pada area terbuka	Terjadinya <i>losses</i> batu bara	Penggunaan larutan polymer
	Terbatasnya area stockpile	E20	Dominasi Batu bara reject	Menghambat sistem inventory perusahaan	Minimalisir jumlah batu bara reject di stockpile
	Lot batu bara longsor	E21	Penyusunan Lot yang tidak tepat. Dikarenakan hujan	Prosentase batu bara losses meningkat	Penyusunan lot batu bara secara padat berbanjar
D	Batu bara terlindas ban	E22	Batu bara tercecer karah jalur truck	Terjadinya batu bara <i>losses</i>	Pembuatan jalur lintas truck pada area stockpile
Distribusi	Kesalahan perhitungan	E23	Human error	Kesalahan dalam pengambilan keputusan	Perbandingan hasil perhitungan manual dengan sistem SAP

Berdasarkan tabel 4 diatas dapat diketahui penyebab dan efek dari batu bara *reject* dan *losses* sebesar 23 kegagalan. Oleh karena banyaknya penyebab dan modus kegagalan tersebut, perlu dilakukan penilaian *severity*, *occurence* dan *detect* untuk memperoleh nilai *risk priority number* / jenis kegagalan paling dominan.

c. Penentuan Nilai RPN

Penilaian severity, occurence dan detect akan dilakukan oleh team engginer yang dibentuk secara purposive sampling. Penilaian nilai RPN ini melibatkan 3 responden dimana responden tersebut setingkat supervisor, administrasi dan pelaksana lapangan penyimpanan curah batu bara di PT Semen Padang. Penilaian nilai RPN dilakukan dengan menggunakan rumus yaitu sebagai berikut:

$$RPN = S * O * D$$

Keterangan : S = Severity(Skala 1 - 10)

O = Occurence (Skala 1 -10)

D = Detect(Skala 1 - 10)

Penilaian nilai RPN dilakukan dengan teknik wawancara dan *forum group decision*. Adapun hasil dari penilaian RPN dari ketiga responden dapat diketahui pada tabel 5 dibawah ini.

Tabel 5 Hasil Pembobotan dan Perhitungan RPN

Tabel 5 Hasil Pembobotan dan Pernitungan RPN													
Failure		\mathbf{S}			0			D			RPN		Rata –
Mode	1	2	3	1	2	3	1	2	3	1	2	3	Rata
E1	7	5	5	5	5	6	4	5	6	140	125	180	148,33
E2	7	7	7	6	3	4	4	5	5	168	105	140	137,67
Е3	6	3	4	6	5	6	5	6	6	180	90	144	138
E4	5	8	7	5	7	8	7	5	6	175	280	336	263,67
E5	7	8	7	6	4	3	7	5	5	294	160	105	186,33
E6	7	8	7	8	5	6	4	3	4	224	120	168	170,67
E7	6	3	4	7	5	3	6	7	6	252	105	72	143
E8	6	8	4	6	2	3	4	8	8	144	128	96	122,67
E9	7	6	7	7	6	5	6	9	9	294	324	315	311
E10	5	3	3	5	4	3	7	9	9	175	108	81	121,33
E11	5	4	3	5	5	4	7	2	9	175	40	108	107,67
E12	5	3	3	3	2	2	4	2	8	60	12	48	40
E13	7	3	3	4	3	2	4	2	3	112	18	18	49,33
E14	8	8	8	7	4	2	5	5	5	280	160	80	173,33
E15	6	3	6	5	5	5	5	4	7	150	60	210	140
E16	7	8	8	3	2	1	2	2	9	42	32	72	48,67
E17	8	8	9	6	10	10	3	1	2	144	80	180	134,67
E18	7	8	8	5	5	4	3	9	4	105	360	128	197,67
E19	8	8	8	8	10	9	7	9	9	448	720	648	605,33
E20	8	8	9	8	10	10	5	4	2	320	320	180	273,33
E21	7	8	8	7	4	2	5	9	8	245	288	128	220,33
E22	6	4	3	5	3	2	5	9	9	150	108	54	104
E23	7	5	4	7	5	6	4	5	6	196	125	144	155

Berdasarkan dari tabel responden dapat diketahui hasil nilai RPN dari 23 jenis dan modus kegagalan diketahui bahwa jenis kegagalan E19, E20, E4, E9 dan E21 merupakan jenis kegagalan dominan. Sedangkan untuk meminimalisir unsur subjektifitas dari setiap responden maka dilakukan analisis ANOVA untuk membuktikan hasil penilaian valid dan tidak subjektif.

d. Analisis ANOVA

ANOVA adalah teknik statistik yang diterapkan untuk melakukan perbandingan rata –rata dari dua sampel atau lebih, analisis ANOVA dilakukan untuk membandingkan nilai RPN dari 23jenis kegagalan. Berdasarkan kondisi tersebut, maka dapat diformulasikan hipotesis sebagai berikut:

$$H_{O}$$
 : $\mu E1_{1} = \mu E2_{2} = \mu E21_{2}$

H₁: Rata –rata nilai RPN dari ketiga responden berbeda, minimal dua jenis kegagalan
 Informasi mengenai rekapitulasi nilai RPN dari ketiga responden dapat direkapitulasi di tabel 6 dibawah ini.
 Tabel 6 Rekapitulasi Nilai RPN

Responden		Rekapitulasi Nilai RPN											
Responden	E 1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	
	120	168	180	100	168	196	252	144	294	125	125	60	
1	E13	E14	E15	E16	E17	E18	E19	E20	E21	E22	E	23	
	112	210	150	42	144	105	256	320	245	150	12	20	
	E 1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	
Responden	125	105	90	280	160	75	100	80	180	48	40	12	
2	E13	E14	E15	E16	E17	E18	E19	E20	E21	E22	E23		
	18	160	60	32	80	160	320	320	128	48	125		
	E 1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	
Responden	150	140	144	336	105	144	90	48	175	36	48	30	
3	E13	E14	E15	E16	E17	E18	E19	E20	E21	E22	E 2	23	
	18	60	120	32	180	128	288	180	80	30	14	14	

Tabel 7 Hasil Output ANOVA

Tuber / Tuber output III (0 111									
	Sum of Squares	Df	Mean Square	F	Sig.				
Between Groups	307.305.072	22	13.968.412	4.172	.000				
Within Groups	154.012.000	46	3.348.087						
Total	461.317.072	68							

Berdasarkan informasi yang tertera pada tabel 7 dapat diidentifikasi bahwa tidak terdapat dari 23 jenis kegagalan potensial yang memiliki nilai RPN sama. Hal ini dibuktikan dengan nilai signifikansi level sebesar 0,000 yang lebih kecil dari 0,05 sebagai toleransi kesalahan dalam penelitian ini. Sedangkan jenis kegagalan potensial yang memiliki nilai RPN tertinggi secara berurutan adalahE19, E20, E4, E9 dan E21. Adapun informasi mengenai E19, E20, E4, E9 dan E21 dapat diketahui pada tabel 8 dibawah ini.

Tabel 8 Jenis Kegagalan Potensial

No	Jenis Kegagalan	Simbol	RPN
1	Terjadinya batu bara yang terbakar	E19	288
2	Terbatasnya area stockpile	E20	273,3
3	Quality Control vendor tidak diterapkan	E4	238,7
4	Batu bara mengalami oksidasi	E9	216,3
5	Lot batubara longsor	E21	151

Berdasarkan informasi dan pengolahan data yang telah dilakukan maka dapat diidentifikasi bahwa dalam *supplychain* pemesanan hingga pemakaian batu bara jenis kegagalan paling dominan ialah terjadinya batu bara yang terbakar, terbatasnya area *stockpile*, *quality control* vendor tidak diterapkan, batu bara mengalami oksidasi, dan lot batu bara longsor saat di *stockpile*. Oleh karena itu dibutuhkan sejumlah upaya dan usulan perbaikan untuk mengatasi jenis kegagalan tersebut.

e. Usulan Perbaikan

Berdasarkan hasil *forum group discussion* yang dilakukan oleh team engginer yang terdiri dari peneliti, supervisor, administrasi dan pelaksana lapangan penyimpanan curah maka dapat dirumuskan usulan perbaikan solutif yang dapat diterapkan untuk mengatasi kelima permasalahan dominan dalam timbulnya batu bara *reject* dan *losses*. Adapun kelima usulan perbaikan tersebut ialah:

- 1. Perlu dilakukannya kembali peninjauan klausul kontrak dengan vendor. Peninjauan klausul kontrak tersebut dapat dilakukan dengan peningkatan sanksi penalti pelanggaran klausul kontrak dan mempercepat *due date* pengambilan status batu bara *reject*.
- 2. Penyusunan skala prioritas vendor yang didasari biaya batu bara termurah, waktu pemesanan tercepat dan jarak tambang terdekat
- 3. Pihak PT Semen Padang mengirimkan perwakilan untuk peninjauan dan pengawasan aktivitas penambangan vendor saat pemenuhan pemesanan batu bara dilakukan.
- 4. Pembentukan susunan lot secara padat berbanjar untuk meminimalisir terjadinya selfcombustion
- 5. Pemberian larutan polymer P.I.C secara berkala sebagai upaya preventif terjadinya batu bara yang mengalami oksidasi

KESIMPULAN

Hasil analisis ANOVA menunjukkan bahwasanya tidak ada nilai *Risk Priority Number*dari 23 jenis kegagalan yang diidentifikasi nilainya sama, sehingga jenis kegagalan dominan pada pemenuhan kualitas dan kuantitas batu bara dapat langsung ditentukan yaitu jenis kegagalan dengan nilai rata-rata *Risk Priority Number*terbesar. Kelima jenis kegagalan terbesar dari dua puluh tiga jenis kegagalan ialah terjadinya batu bara yang terbakar, terbatasnya area *stockpile*, kegagalan penerapan *quality control* oleh vendor, batu bara mengalami oksidasi, dan terjadinya lot batubara longsor di *stockpile*. Upaya solutif yang diusulkan untuk meminimalisir penyebab dari penurunan kualitas dan kuantitas batu bara di PT Semen Padang ialah dengan melakukan penyusunan skala prioritas vendor, perubahan susunan lot batu bara, penggunaan larutan polymer P.I.C dan pengawasan area *stockpile* secara berkala.

DAFTAR PUSTAKA

Foster, S. Thomas., (2010), Managing Quality (Integrating The Supply Chain, Fourth Edition). Pearson Education, Inc: New Jersey

McDermott, R.E., Mikulak, J.E., Beauregard, M.R. (1996). The Basics of FMEA. New York: Productivity Press

Mourbay, John., (1997), Reliability-centered Maintenance. Industrial press inc: New York.

Nursanti,Ida. and Wisnu Aji,Dimas., (2013), "PENENTUAN PRIORITAS MODE KEGAGALAN PENYEBAB KECACATANPRODUK DENGAN ANOVA(STUDI KASUS: CV. PUTRA NUGRAHA TRIYAGAN)"Simposium Nasional Teknologi Terapan, ISSN 2339-028X) pp. 20 -25

Liker, J. K. (2005), "The Toyota Way", Erlangga, Inc., pp. 163-169