PERAMALAN KEBUTUHAN SOLAR UNTUK KRP KIJANG INNOVA PADA DIVISI SCM PT XYZ

Etika Muslimah¹, Muhammad Luthfi Saqqo²

Jurusan Teknik Industri, Fakultas Teknik, Universitas Muhammadiyah Surakarta Jl. A. Yani Tromol Pos 1 Pabelan Kartasura 57102 Telp 0271 717417
Email: etika.muslimah@ums.ac.id

Abstrak

PT XYZ merupakan perusahaan eksplorasi dan produksi yang bertugas mengangkat minyak mentah (crude oil) dan gas dari dalam bumi. PT XYZ memiliki divisi Supply Chain Management (SCM), divisi SCM mempunyai tugas antara lain, Procurement, Receiving and Inventory, Transportation serta General Services. Transportasi pada perusahaan ini dilimpahkan kepada PT. ABC sebagai vendor yang dipilih melalui sistem tender yang diadakan oleh divisi procurement di bagian SCM. PT ABC menyediakan driver, maintenance kendaraan, asuransi sesuai dengan Kontrak Kerjasama (KKS). Namun PT ABC tidak menanggung pengeluaran konsumsi kebutuhan bahan bakar minyak (BBM) Solar, hal ini berdampak pada pengeluaran BBM yang berlebih karena mobilitas yang tinggi pada PT XYZ. Penelitian ini bertujuan mengetahui konsumsi BBM Solar pada PT XYZ. Hasil penelitian ini akan digunakan sebagai acuan oleh PT XYZ untuk melakukan efisiensi penggunaan BBM Solar. Analisis yang akan digunakan adalah dengan melakukan peramalan (forecast) konsumsi solar pada Kendaraan Ringan Pribadi (KRP) Kijang Innova yang digunakan.. Metode yang digunakan dalam penelitian ini adalah Time Series. Selain melakukan forecast konsumsi solar, penelitian ini juga untuk menntukan efisiensi dari kendaraan tersebut. Efisiensi ditentukan dengan membandingkan dengan standard yang telah ditetapkan oleh produsen kendaran tersebut. Hal ini menjadi acuan untuk merumuskan efisiensi suatu kendaraan dalam kondisi normal atau perlu dilakukan maintenance.

Kata kunci: Efisiensi; Forecasting; Maintenance; Time Series

Pendahuluan

Transportasi merupakan kegiatan untuk memindahkan barang (muatan) ataupun penumpang dari suatu tempat ke tempat lain (Salim, 2000). PT. XYZ merupakan perusahaan yang bergerak dibidang minyak dan gas. Perusahaan ini bertugas mengeksplorasi minyak dari dalam bumi untuk kemudian diolah dan didistribusikan. Transportasi merupakan salah satu aktivitas ini di perusahaan. Perusahaan ini memiliki beberapa divisi, salah satunya divisi Supply Chain Management (SCM. Divisi ini bertugas dalam bidang Procurement, Receiving and Inventory, Transportation serta General Services. Salah satu aktivitas di divisi SCM adalah tranportasi. Transportasi yang merupakan aktivitas yang memiliki frekuensi tinggi. Transportasi di PT XYZ merupakan bagian dari fungsi Supply Chain Management (SCM) yang mengatur akomodasi perjalanan pegawai untuk dinas ataupun keperluan sehari-hari baik dalam keperluan eksplorasi produksi maupun untuk keperluan kantor. Transportasi pada PT XYZ ini dilimpahkan kepada Vendor yang dipilih melalui sistem tender yang diadakan oleh divisi procurement di bagian SCM. Pihak PTXYZ bekerjasama dengan vendor sesuai dengan kesepakatan kontrak kerjasama (KKS).

Vendor transportasi pada PT XYZ di akomodasi oleh PT ABC yang menyediakan 1 unit PajeroSport, 6 unit Pick Up Double Kabin, 3 Single Kabin, 1 unit Bus, 1 unit Ambulans, 23 unit Kijang Innova, 1 unit CraneKato, 2 unit Trailer, 1 unit Truck TD, 2 unit Forklift, 2 Unit FireTruck, 1 unit FireJeep, 1 unit DumpTruck, 1 unit Bulldozer, 1 unit Grader dan 1 unit Wales.

Dari data diatas dapat diketahui unit terbanyak untuk kegiatan transportasi yakni Kijang Innova dengan bahan bakar solar.Konsumsi bahan bakar solar menjadi kebutuhan yang paling besar utnuk transportasi. Faktor efisiensi menjadi hal yang penting untuk memprtimbangkan penggunaan kendaraan tersebut. Penelitian ini dimaksudkan untuk mengetahui konsumsi solar dan efiisiensi khusus pada kendaraan tersebut. Di perusahaan tersebut Kijang Innova dimasukkan dalam kelompok Kendaraan Ringan Penumpang. Aktivitas transportasi yang menggunakan kendaraan ini dalam sehari cukup banyak. Sehingga konsumsi solar sangat besar. Hal tersebut menyebabkan pengeluaran biaya yang cukup besar. Sehingga perusahaan merasa perlu untuk melakukan analisis untuk konsusmsi bahan bakar solar tersebut, dan efiseinsinya.

Kijang Innova menjadi salah satu kendaraan yang digunakan oleh PT. XYZ yang intensitasnya sangat tinggi untuk keperluan sehari-hari. Pengisian bahan bakar dilakukan setiap hari sesuai kebutuhan untuk transportasi dalam satu hari tersebut. Pencatatatan data kebutuhan solar dilakukan setiap hari. Analisis peramalan diperlukan untuk dapat digunakan sebagai bahan pertimbangan bagi perusahaan dalam membuat keputusan dalam mengalokasikan kebutuhan bahan bakar.

Beberapa penelitian yang menggunakan forecasting sebagai metode untuk perencanaan sudah dilakukan oleh beberapa peneliti. Penelitian tersebut meliputi peramalan untuk penjualan produk sebuah perusahaan (Rahmawati, 2013) dan (Jonnius dan Ali, 2012). Penelitian dengan *forecasting* digunakanuntuk mengetahui lebih jelas mengenai data di masa yang akan datang berdasarkan data masa lalu. Hal ini merupakan komponen penting dalam industri untuk menyiapkan produk atau jasa di masa yang akan datang.

Peramalan

Peramalan adalah suatu proses memperkirakan secara sistematis tentang apa yang mungkin terjadi di masa yang akan dating berdasarkan informasi data masa lalu dan sekarang yang dimiliki untuk meminimalisir tingkat kesalahan (Riduwan, 2010).

Peramalan (*Forecasting*) merupakan kegiatan untuk menentukan konsumsi bahan baku/produk yang akan datang, serta merencanakan kapasitas produksi yang baik sesuai dengan besarnya konsumsi permintaan. (Rangkuti, 2005)

Terdapat beberapa jenis metode peramalan dalam bagian manajemen. Namun dalam beberapa kasus, biasanya satu metode belum tentu cocok digunakan untuk kasus tertentu, sehingga dalam peramalan dapat menggunakan banyak metode untuk pemecahan sebuah masalah, karena hasil dari setiap metode akan berbeda. Peramalan menggunakan teknik-teknik peramalan yang bersifat formal maupun informal (Gaspersz, 1998). Secara umum metode peramalan diklasifikasikan dalam 2 kategori utama, yakni (Makridakis, 1999):

1. Peramalan dengan menggunakan metode kualitatif.

Peramalan dengan metode kualitatif dilakukan dengan beberapa pertimbangan, antara lain:

- a. Tidak adanya data masa lalu.
- b. *Trend* data masa lalu berbeda dengan *trend* data di masa yang akan datang.

Metode yang digunakan pada peramalan kualitatif adalah pendekatan berpikir *exploratory* (berpikir ke masa depan dengan dasar kejadian pada saat ini) dan pendekatan berpikir normatif (berpikir sesuai yang diinginkan di masa yang akan datang dan kemudian menentukan langkah yang diperlukan untuk saat ini).

2. Peramalan dengan menggunakan metode kuantitatif

Peramalan dengan menggunakan metode kualitatif dapat diterapkan dengan beberapa persyaratan sebagai berikut:

- a. Tersedia informasi data masa lalu.
- b. Informasi yang didapatkan dapat diterjemahkan kedalam data *numeric*.
- c. Data masa lalu memiliki trend yang sama dengan masa yang akan datang.

Metode peramalan (Forecasting) kuantitatif dapat digolongkan dalam dua kategori, antara lain (Makridakis, 2010):

- 1. Teknik Deret Berkala (Time Series)
 - Teknik Deret Berkala (*Time Series*) yakni suatu metode peramalan yang memperlakukan proses untuk memperoleh *output*/taksiran sebagai sistem yang tidak bisa diketahui/*black box* dan tidak perlu dilakukan usaha untuk menelusurinya.
- Teknik explanatory/kausal, yaitu menganggap nilai taksiran memiliki hubungan sebab akibat dengan input sistem.

Metode Deret Waktu (*time series*) merupakan metode kuantitatif yang sering digunakan dan memiliki beberapa metode, antara lain:

a. Simple Average

Metode Simple Average menghitung rataan dari data yang tersedia (sejumlah 1 periode)

b. Moving Average

Model rata-rata bergerak menggunakan sejumlah data aktual permintaan yang baru untuk membangkitkan nilai ramalan untuk permintaan dimasa yang akan datang.

c. Weighted Moving Average

Metode Weighted Moving Average (WMA) dapat mengatasi kelemahan dari metode Moving Average (MA) yang menganggap setiap data memiliki bobot yang sama, padahal akan lebih normatif apabila data yang baru memiliki data akurasi yang lebih tinggi.

d. Single Exponential Smoothing

Pengaruh *smoothing* pada metode ini yakni semakin besar nilai , *smoothing* yang dilakukan semakin kecil dan sebaliknya. Karena berupa variable, masalah pada peramalan metode ini adalah mencari nilai yang optimal.

e. Double Exponential Smoothing

Metode ini baik digunakan pada data yang menunjukan adanya trend. Sehingga pada exponential smoothing ini dipengaruhi oleh data Trend dan data Level (L) maka untuk L_0 nilai yang didapat adalah dari $Linier\ Intercept$ dan T_0 adalah nilai yang didapat dari $Linier\ Slop$. Kedua nilai linier tersebut didapat dari proses regresi.

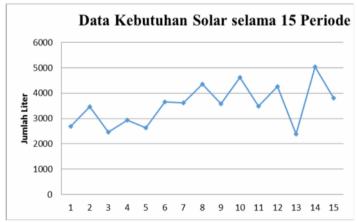
Keakuratan peramalan digunakan untuk memilih model terbaik dari metode-metode yang ada, dengan cara melihat atau memilih nilai *Mean Absolute Percentage Error* (MAPE) terkecil.

Metode evaluasi atas terjadinya perbedaan dalam peramalan, dibutuhkan efektifitas pengukuran. *Error* dalam peramalan dapat dilakukan mekanisme pemberian skor yang biasa digunakan. *Error* peramalan adalah perbedaan secara numerik dari peramalan permintaan dengan permintaan actual. Dimana D1 adalah data pada periode waktu t dan e, merupakan kesalahan (*error*) pada periode i yang nilainya didapat dari selisih antara nilai aktual dengan nilai peramalan periode i. Beberapa statistik kesalahan peramalan antara lain:

- 1) Cumulative sum of forecast errors
- 2) Mean Square Error
- 3) Mean absolute deviation of forecast error
- 4) Mean absolute percentage errors

Metode

Sebelum melakukan pemilihan suatu model *forecasting*, lebih baik mengidentifikasi pola historis dari data aktual permintaan. Penelitian ini menggunakan *software* WIN-QSB untuk melakukan pengolahan data. Setelah data diolah dilakukan identifikasi pola data yang digunakan.


Pemilihan model *forecasting* seharusnya berdasarkan pada pola historis dari data aktual konsumsi BBM solar pada KRP Kijang Innova. Berdasarkan data aktual konsumsi BBM solar pada KRP Kijang Innova periode bulan Januari sampai periode bulan Agustus, terlihat bahwa fluktuasi data tiap periode mengalami peningkatan atau lebih dikenal dengan pola data *trend*. Metode yang digunakan adalah *forecasting Simple Average* (SA), *Single Exponential Smoothing* (SES), *Double Exponential Smoothing* (DES) dan *Linier Regression* (LR).

Hasil dan Pembahasan

Berikut adalah data-data yang dikumpulkan meliputi segala informasi yang terkait. Informasi data diperoleh dengan meminta data konsumsi bahan bakar kepada pihak-pihak terkait.

Dilihat dari data konsumsi BBM solar pada mobil Innova yang berjumlah 22 unit, maka dengan melakukan pengolahan data Konsumsi BBM solar setiap periode akan terlihat pola data dari konsumsi BBM solar tersebut. Setelah mengetahui pola data selanjutnya peneliti melakukan pengolahan data lanjutan untuk melakukan peramalan dengan menggunakan metode-metode peramalan (Forecasting).

Dibawah ini merupakan pola data konsumsi BBM solar pada kijang Innova dalam liter, data yangdikumpulkan merupakan data setiap periode yang berlangsung selama 15 hari awal bulan serta 15 hari akhirbulan.

Gambar 1. Pola Data Konsumsi BBM solar pada Kijang Innova

Dari grafik diatas dapat diketahui bahwa pola data yang terjadi adalah *Trend* sehingga metode peramalan yang digunakan *Simple Average* (SA), *Single Exponential Smoothing* (SES) *Double Exponential Smoothing* (DES) dan *Linier Regression* (LR). Trend adalah rata-rata perubahan dalam jangka waktu panjang. Factor trend menggambarkan perilaku data yang meningkat, menurun atau tidak berubah (Makridakis, 2010).

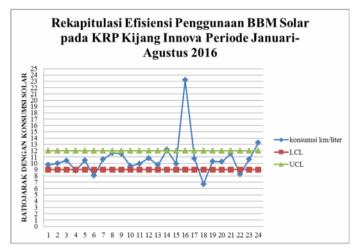
	Tabel 1.Data Konsumsi BBM Solar pada Kijang Innova dalam Liter														
	JANUARI		NUARI FEBRUARI		MARET		APRIL		MEI		JUNI		JULI		AGUSTUS
No	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1
1	50	80	110	85	149	180	208	245	185	250	100	190	65	220	230
2	90	125	78	140	110	55	105	88	120	75	95	127	145	175	145
3	60	70	78	60	35	70	65	105	90	126	90	110	115	77	140
4	87	135	55	85	60	80	120	170	140	60	100	225	95	155	75
5	175	220	100	123	85	190	170	128	55	130	110	110	70	120	70
6	30	250	130	190	220	305	270	345	265	460	330	430	195	522	490
7	140	165	135	90	125	195	200	260	162	260	182	135	70	140	145
8	155	180	148	152	130	200	160	300	255	245	187	255	142	265	195
9	185	105	110	102	120	155	240	250	120	290	220	330	90	290	220
10	215	195	100	180	130	235	190	245	180	295	210	240	160	245	235
11	80	260	115	220	90	193	150	230	305	325	280	260	185	295	225
12	185	149	116	150	180	170	205	270	195	295	205	275	150	270	245
13	160	135	155	165	125	185	155	90	120	115	140	110	45	120	115
14	130	174	109	100	107	205	166	203	160	130	110	155	40	208	120
15	70	175	55	70	56	55	120	145	130	145	98	145	40	280	75
16	160	111	115	92	120	85	155	175	89	215	92	140	100	230	215
17	205	190	145	205	150	275	160	210	255	270	230	225	155	315	240
18	140	225	160	215	160	210	235	285	180	255	230	262	170	250	200
19	30	75	85	50	85	100	135	30	100	205	60	110	50	203	115
20	100	105	93	115	105	105	95	198	125	135	155	80	90	150	80
21	95	195	115	130	180	220	170	150	150	90	45	95	35	170	55
22	145	140	155	220	105	190	135	230	195	200	205	255	135	340	175
Jumlah	2688	3461	2463	2941	2628	3660	3610	4354	3577	4573	3475	4266	2343	5042	3806

		,	Tabel 2 Out	out Data WI	N-QSB.			
CFE	6145.891	7967.453	2545.938	1351.526	10972.92	3699.994	1.56E+03	-1.22E-03
MAD	724.9803	777.9737	727.561	915.9335	913.5458	647.8461	858.5703	533.3851
MSE	748324.9	858960.4	772686.4	1198675	1163465	661056.1	1056091	442307.9
MAPE	19.94068	20.76824	21.0021	26.35716	23.49885	18.59934	24.74128	16.39028
Trk.Signal	8.477321	10.24129	3.499278	1.475572	12.01135	5.711224	1.818974	-2.29E-06
R-sqaure	0.434249	0.6561927	0.5119135	0.8927242	1	0.4698309	0.7545281	0.2720081
		Alpha=0.1	Alpha=0.5	Alpha=0.9	Alpha=0.1	Alpha=0.5	Alpha=0.9	a=2771.591
		F(0)=2687	F(0)=2687	F(0)=2687	F(0)=2687	F(0)=2687	F(0)=2687	b=94.0929
					F'(0)=2687	F'(0)=2687	F'(0)=2687	

Dari data diatas di dapatkan bahwa pada *coloumn* MAPE nilaipada LR memiliki nilai yang terkecil yakni 16.39028, MAPE yang dipilih karna menunjukan tingkat *error* yang paling kecil. Dari data diatas diketahui tingkat *error* terkecil ditunjukan oleh *Linier Regression* (LR). Selanjutnya dari data tersebut dilakukan verifikasi data berdasarkan *forecasting* dari data *LinierRegression* (LR).

Tabel 3 Hasil Forecasting Konsumsi BBM solar pada KRP Kijang Innova dengan Metode Time Series dalam Liter

Bulan	SA	SES 0.1	SES 0.5	SES 0.9	DES 0.1	DES 0.5	DES 0.9	LR
16	3524.333	3483.746	3959.969	3903.373	3067.222	3900.512	3970.908	4277.076
17	3524.333	3483.746	3959.969	3903.373	3067.222	3900.512	3970.908	4371.169
18	3524.333	3483.746	3959.969	3903.373	3067.222	3900.512	3970.908	4465.262
19	3524.333	3483.746	3959.969	3903.373	3067.222	3900.512	3970.908	4559.355
20	3524.333	3483.746	3959.969	3903.373	3067.222	3900.512	3970.908	4653.448
21	3524.333	3483.746	3959.969	3903.373	3067.222	3900.512	3970.908	4747.541
22	3524.333	3483.746	3959.969	3903.373	3067.222	3900.512	3970.908	4841.633
23	3524.333	3483.746	3959.969	3903.373	3067.222	3900.512	3970.908	4935.726


Tabel 4 Daftar Driver dan Jarak Tempuh Kilometer KRP Kijang Innova

Kode	Nama Sopir	No Mobil	Alokasi Driver	Awal	Akhir	Interval Kilometer	Konsum si BBM	Konsumsi km/liter
1	Jatmiko	K 9367 DN	Assisten Manager PWP- GS	19846	42718	22872	2347	9.745206647
2	Eko Yurianto	K 9362 DN '	Assisten Manager Produksi	17836	34546	16710	1673	9.988045427
3	Edi S	K 9359 DN	Assisten Manager RAM	13255	26730	13475	1291	10.43764524
4	Mujiono MRH	K 9369 DN	Poll Harian	18241	32750	14509	1642	8.836175396
5	M. Adib	K 9374 DN	Poll Harian	32842	52267	19425	1856	10.46605603
6	Rudi Santoso	K 9376 DN	Assisten Manager HR	19288	54876	35588	4432	8.029783394
7	Sardi	K 9373 DN	Poll Harian	32689	58236	25547	2404	10.62687188
8	Beno	K 9375 DN	Poll Harian	26892	61445	34553	2969	11.63792523
9	Ristiawan	K 9379 DN	Poll Harian	25037	57636	32599	2827	11.53130527
10	Jamari	K 9357 DN	Poll Shift	27135	56323	29188	3055	9.554173486
11	Priyo S	K 9363 DN	Assisten Manager PE	30263	62215	31952	3213	9.944600062
12	Iwan P	K 9390 DN	Poll Harian	34380	67451	33071	3060	10.80751634
13	Trihono Heru	K 9366 DN	Poll Harian	27467	46318	18851	1935	9.742118863
14	Didik	K 9364 DN	Poll Harian	30860	56606	25746	2117	12.16154936
15	Andika Y	K 9368 DN	Assisten Manager SCM	11673	22767	11094	1119	9.914209115
16	Andika Y	K 9001 DN	Assisten Manager SCM	41643	54175	12532	540	23.20740741
17	Edi Sarwono	K 9381 DN	Poll Harian	27044	48848	21804	2024	10.77272727
18	Edi Sarwono	K 8800 JN	Poll Harian	202100	202568	468	70	6.685714286
19	Ali Akrom, Budi W, Legiman Ari WL,	K 9358 DN	Poll Shift	31115	64432	33317	3230	10.31486068
20	Kusbudiono, Suyitno B	K 9371 DN	Poll Shift	25746	58242	32496	3177	10.22851747
21	Zaeroni	K 9361 DN	Assisten Manager Kesehatan	11146	27709	16563	1433	11.55826936
22	Heru Indarto	K 9370 DN	Assisten Manager HSSE	13601	27970	14369	1731	8.300982091
23	Ali Mashar	K 9360 DN	Poll Harian	25944	46125	20181	1895	10.64960422
24	Mujiono DGK	K 9372 DN	Poll Harian	21098	58540	37442	2825	13.25380531

Setelah dilakukan pengolahan data Konsumsi BBM solar diketahui jumlah kebutuhan dari periode 16 sampai periode 23. Selain itu dari data tersebut dapat diketahui pula kendaraan mana yang sebaiknya dilakukan *maintenance* dikarenakan boros sebab konsumsi BBM Solar yang terlalu besar berdasarkan interval kilometer berbanding dengan konsumsi solar tersebut.

Tabel diatas merupakan data *driver* beserta kilometer awal saat mobil pertama digunakan pada periode 1 bulan januari 2016 sampai kilometer terakhir pada periode 1 bulan agustus 2016.

Dari data diatas selanjutnya diplotkan kedalam grafik, untuk menunjukan kendaraan mana yang sebaiknya dilakukan *maintenance* lebih awal karena konsumsi solar yang berlebih.

Gambar 2. Tingkat Efisiensi KRP Kijang Innova pada Periode 1 Januari 2016 - Periode 1 Agustus 2016

Dari analisis data diatas terdapat beberapa kendaraan yang berada dibawah batas minimum boros yakni dibawah batas LCL 9, kendaraan dibawah LCL adalah kendaraan nomor 18 yang hanya mampu menempuh 6,6857 KM dalam 1 liter solar, disisi lain terdapat kendaraan yang berada diatas UCL 12 yakni kendaraan nomor 16. Kendaraan nomor 16 mampu menempuh 23,207 KM dalam 1 liter solar, hal ini belum bisa dianggap hemat karena terdapat faktor *human error* saat melakukan *input* nilai KM kendaraan Kijang Innova.

Diketahui nilai efisiensi Kijang Innova antara 1:9 sampai 1:12 yang artinya setiap liter solar dapat menempuh jarak 9 Km sampai 12 Km, semakin besar kilometer yag dapat ditempuh maka bahan bakar semakin efisien. Hal ini berpengaruh pada pengeluaran biaya untuk penggunaan solar pada setiap kendaraan. Kedepan dengan adanya penelitian ini pengeluaran solar dapat ditekan untuk efisiensi biaya bahan bakar karena dengan penelitian ini diketahui kendaraan Kijang Inova berada pada yang kurang dari nilai efisiensi. Selain itu adanya penelitian ini juga untuk mengetahui lebih awal kendaraan mana yang sebaiknya dilakukan *Maintenance* karena adanya data perbandingan efisiensi bahan bakar.

Kesimpulan

Berdasarkan hasil perhitungan dan analisis data diatas maka dapat diambil beberapa kesimpulan :

- 1. Data kebutuhan solar pada KRP Kijang Innova setelah dilakukan pengolahan data *forecasting* periode 16 sampai periode 23 didapatkan kebutuhan solar sebagai berikut: Periode 16 adalah 4277.076 liter solar, periode 17 adalah 4371.169 liter solar, periode 18 adalah 4465.262 liter solar, periode 19 adalah 4559.355 liter solar, periode 20 adalah 4653.448 liter solar, periode 21 adalah 4747.541 liter solar, periode 22 adalah 4841.633 liter solar, periode 23 adalah 4935.726 liter solar.
- 2. Pengolahan data dengan menggunakn*Simple Average, Single Exponential Smoothing, Double Exponential Smoothing* serta *Linier Regression* didapatkan data bahwa *Linier Regression* memiliki data yang lebih akurat, dengan tingkat MAPE 16,39 %
- 3. Apabila terdapat data yang berada dibawah UCL 9 maka perlu adanya *maintenance* pada kendaraan tersebut, karena hal ini akan berdampak pada pengeluaran solar yang berlebih sehingga nilai *cost* juga akan besar.

Saran

Dari pengelolaan data konsumsi BBM saran peneliti kepada petugas input data antara lain:

- 1. Adanya data diatas dapat dijadikan acuan bagi PT XYZ selaku pihak yang menggunakan solar untuk memperkirakan kebutuhan secara berkala.
- 2. Petugas input data dari PT. XYZ sebaiknya melakukan *input* data harian dengan lebih teliti untuk mengurangi tingkat bias pada *input* data.

Daftar Pustaka

Abbas, Salim, (2000), "Manajemen Transportasi. Cetakan Pertama", Edisi Kedua.Ghalia Indonesia. Jakarta.

Jonnius dan Auzar Ali, (2012) "Analisis Forecasting Penjualan Produk Perusahaan".

Makridakis,S, (1999)"*Metodedan Aplikasi Peramalan*", EdisiKe-2.TerjemahanHariSuminto.Jakarta: BinarupaAksara.

Makridakis, S. dan Steven Wheelwright, (2010) "Metode dan Aplikasi Peramalan", Jilid 1, Binarupa Aksara Publisher, Tangerang

Rangkuti, Freddy, (2005), "Analisis SWOT: Teknik Membedah Kasus Bisnis", Jakarta: PT. Gramedia

Rahmawati, Noviana, (2013)"ForecastingPenjualan Sepeda Motor Kawasaki pada Sumber Buana Motor, Skripsi, Akuntansi Diploma III, Fakultas Ekonomi, Universitas Negeri Yogyakarta, Yogyakarta

Riduwan, (2010), "Metode dan teknik Menyusun Tesis", Alfabeta, bandung