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ABSTRACT 

 
Following a linear controller design, an anti-windup compensation is a 

popular approach that may be taken to deal with input saturation. There 

have been many anti-windup techniques proposed. Based on a transfer 

function parameterization of the resulting anti-windup controller, these anti-

windup techniques may be classified into two categories, which may be 

called 1-degree of freedom (1-DOF) and 2-degree of freedom (2-DOF) 

parameterizations. Using newly known equivalence between a multivariable 

nonlinear algebraic loop and a constrained quadratic programming, two 

kind parameterizations of some existing anti-windup compensations are 

explained. 

 
INTRODUCTION 

Actuator saturation is a ubiquitous 
constraint that may induce adverse effects 
in any control systems. For linear systems, 
there have been many approaches 
proposed to overcome the effects of 
control input saturation. Anti-windup 
approaches (including conditioning 
techniques) are widely popular in which an 
anti-windup compensator is only active in 
the nonlinear region or a linear controller 
take control otherwise, see Fig.1. 
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Fig.1 An anti-windup scheme  

The anti-windup compensator may be 
a static gain matrix (e.g. (Mulder et.al., 
2001)) or a dynamic transfer matrix (e.g. 
(Grimm et.al., 2003). Some of anti-windup 
schemes may include a nonlinear algebraic 
loop. It is illustrated in (Mulder et.al., 
2001) that a nonlinear algebraic loop in an 
anti-windup scheme may improve the 
performance of its closed loop system 
under input saturation. 

The resulting anti-windup controller is 
a combination of the nominal controller 
and anti-windup compensator. Based on a 
transfer function parameterization, these 
anti-windup approaches may be classified 
into two categories, which may be called 
1-degree of freedom (1-DOF) and 2-degree 
of freedom (2-DOF) parameterizations. In 
fact, a unified view of some anti-windup 
approaches that has been presented in 
(Kothare et.al., 1994) may be presented in 
a 2-DOF parameterization. Meanwhile, the 
1-DOF parameterization may be found in 
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(Edwards and Postlethwaite, 1998). 
However, a nonlinear algebraic structure 
that may arise in the anti-windup schemes 
has not taken into account properly in that 
parameterization. 

Using the equivalence between a 
multivariable nonlinear algebraic loop and 
a constrained quadratic programming that 
has been recently known (Syaichu-
Rohman et.al., 2003), two kind 
parameterizations, as in (Kothare et.al., 
1994) and (Edwards and Postlethwaite, 
1998) of some existing anti-windup 
compensations are revisited and then 
reformulated here. 

Several static anti-windup schemes, 
i.e. the anti-windup compensator that has a 
zero order or a static matrix gain, are 
especially considered in this paper. The 
anti-windup (compensated) controller of 
the nominal one may be formulated as 
follows: 
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Note that the anti-windup compensation is 
only active when saturation occurs, i.e. 
v≠0. 
 

NONLINEAR ALGEBRAIC LOOP 

Consider a feedback system of Fig.2 in 
which Ψ represents a multivariable 
saturation function with ±1 saturation 
level. It is proved in Syaichu-Rohman 
et.al, 2003) that a nonlinear algebraic loop 
in Fig.2 is equivalent to a constrained 
quadratic programming (QP) problem 
(M=M

T>0), that is 

{ })()(minargˆ uuMuuu T −−= (4) 

subject to the constraint 
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Fig.2 A multivariable nonlinear algebraic loop 

 
Indeed, the algebraic loop in Fig.2 is a 
well-posed nonlinear algebraic loop and 
may be denoted as 

M
Ψ  with the following 

relations: 
 

ˆ( )u Mu I M u= + − ,   (6) 

ˆ ( )u u= Ψ .    (7) 
 
In anti-windup schemes, a nonlinear 
algebraic loop may arise and is generally a 
well-posed non-symmetric loop, M≠M

T>0. 
Using (2) and (3),  the following relation is 
obtained.  

uIIuIu ˆ))(()( 1
2

1
2

−− Λ+−+Λ+= . 

    (8) 
Hence, it is clear that (7) and (8) form a 
multivariable nonlinear algebraic loop with  
 

1
2 )(: −Λ+= IM ,  (9) 

 
and the loop will have a constrained QP 
equivalent problem if M is symmetric. 

The parameterization of some anti-
windup schemes (including some 
conditioning techniques) to regard the 
existence of the equivalent nonlinear 
algebraic loops within the schemes may 
now be formulated. The formulation will 
be put into both 1-DOF and 2-DOF using 
L  and M  as parameter matrices.  
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Referring to (Kothare et.al., 1994), the 
anti-windup approaches that are considered 
here are the one in (Mulder et.al., 2001) 
and conditioning techniques in (Hanus 
et.al., 1987), (Hanus & Kinnaert, 1989) 
and the multivariable version of (Walgama 
et.al., 1992). This version is a scheme with 
non-filtered realizable reference, see also 
(Peng et.al., 1998) that uses optimal 
realizable reference computation or 
optimal ’direction changer’ as part of the 
anti-windup schemes. Analyzing those 
anti-windup schemes or approaches, the  
associated L  and M  parameter matrices 
may be obtained as the following. 

In (Mulder et.al., 2001), the parameter 
matrices are  

 

1 1
1 2 2( ) and ( )L I M I

− −:= Λ + Λ := + Λ . [10] 
 

Meanwhile, the conditioning technique of 
(Hanus & Kinnaert, 1989) has 
 

1 1and T

c c c c
L B D M D D

− − −:= := .            [11] 
 

Similarly, the scheme in (Peng et.al., 1998) 
uses the same L  as in (Hanus & Kinnaert, 
1989) but with  
 

1T

c c
M D D

− −:= Π ,             [12] 
 

for any user-chosen 0TΠ = Π > . As for 
the conditioning technique of (Walgama 
et.al., 1992), it has   
 

1( )
c c

L B D Iρ −:= + and  
1( ) ( )T

c c
M D I D Iρ ρ− −:= + + ,           [13] 

 

with 0 ρ≤ < ∞ . 
 

It is clear that defining M I=  means 
disregarding the algebraic loop or 
making

M
Ψ = Ψ . 

1-DOF PARAMETERIZATION 

Consider a 1-DOF parameterization as 
illustrated by Fig.3 in which K(s) is a 
nominal (linear) controller and X(s) is an 
anti-windup compensator 
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Fig.3 1-DOF parameterization of anti-

windup controller 
 

In the 1-DOF parameterization, the anti-
windup controller is parameterized by a 
linear transfer function ( )X s  (see 
[Campo, Posthlethwaite]), i.e., 
 

1

1
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The state space realization of the nominal 
controller ( )K s  and the transfer function 

parameter ( )X s  are as follows:  
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Using the related L and M matrices to the anti-
windup approaches, Table 1 presents the 
details of state space realization of X(s). 
Note that if M=I (without algebraic loop),  
then the parameterization results in 
(Edwards & Postlethwaite, 1998) will be 
obtained. Otherwise, the second column of 
the table is obtained. 
 
2-DOF PARAMETERIZATION 
Meanwhile, in the 2-DOF parameterization 
(see Fig.4), the controller is parameterized 
by two transfer functions 1( )K s  and 
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2 ( )K s  (see (Peng et.al., 1998)), or 1( )sK  

and 2( )sK , i.e., 

1 2 ˆ( ) ( ) ( )
ˆ

e
u s e s u sK K

u

 
= + := Κ , 

 
    [15] 

with the following state space realizations:  
 

( ) c c c c

c c

A LC B LD L
s

MC MD I M

− − 
Κ :=  − 

,  [16] 

where       

1( ) c c c c
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,and 

2 ( ) c c

c

A LC L
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.          [17] 
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Fig.4 2-DOF Anti-windup Parameterization 
 

Table 2 that is similar to Table 1 may 
then be devised for the case of 2-DOF 
parameterization. Again, if nonlinear 
algebraic loops are not to consider (i.e. 
M=I), some schemes based on 
conditioning technique will fit to the 
frameworks as reported in (Kothare et.al, 
1994). 

In addition, as presented in (Kothare 
et.al., 1994), the nominal controller may 
also be written as the following a left 
coprime parameterization : 

1 1( ) ( ) ( ) ( ) ( )K s V s U s V s U s− −:= =     [18] 
 

The associated 2-DOF parameterization 
transfer functions are 
 

1 2( ) ( ) and ( ) ( )K s U s K s I V s:= , := − .    [19] 

Now, if the nonlinear algebraic loop is to 
consider, the following transfer functions 
of the 2-DOF parameterization will be 
obtained.  
 

1 1( ) ( ) ( )s MK s U sK = := ,   

2 2( ) ( ( )) ( )s I M I K s I V sK = − − := − [20] 

where [ ]1 2( ) ( ) ( )s s sK KΚ = . 
  

It is then clear that matrix M, which is 
involved in the nonlinear algebraic loop, is 
the common factor of the left coprime 
parameterization of the nominal controller.  
 

CONCLUDING REMARKS 
Using newly known equivalence 

between a multivariable nonlinear 
algebraic loop and a constrained quadratic 
programming, two kinds of 
parameterizations of some existing anti-
windup compensations are explained. In 
particular, the use of quadratic 
programming (QP) in some anti-windup 
schemes may now be modeled as a 
nonlinear algebraic loop that enables a 
more appropriate parameterization of the 
schemes. 
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Table 1 State space realization of X(s) 

( )X s   Anti-windup Scheme  

M I≠   M I=   
(Mulder et.al., 2001) 
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(Walgama et.al., 1992) ( )

( )( )

T
c c c
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C
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2 0a Λ =  (without algebraic loop) 
b  (Hanus, 1989) or (Peng et.al., 1998) with IΠ =   
c  (Hanus, 1987)  

 

Table 2 State space realization of ( )sΚ  

Anti-windup 
Scheme 

( )s M IΚ : ≠   

 (Mulder et.al., 
2001) 

1 1 1
1 2 1 2 1 2

1 1 1
2 2 2 2

( ) ( ) ( )

( ) ( ) ( )
c c c c

c c

A I C B I D I

I C I D I
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 − − −
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− Λ + Λ −Λ +Λ Λ +Λ
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(Hanus & 

Kinnaert, 1989) a  

1 1

1
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T T
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(Walgama et.al., 
1992) 

1 1 1

1 1
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Anti-windup 
Scheme 

( )s M IΚ : =   

(Mulder et.al., 

2001) b  
1 1 1

0
c c c c

c c

A C B D

C D

− Λ −Λ Λ 
 
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(Hanus et.al., 
1987) 

1 10
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a  or (Peng et.al., 1998) with IΠ =   

2 0b Λ =   (without algebraic loop) 
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