Procesd mes of WA TI0N AL CONFERENCE ON COMPUTER SCIENCE & INFORMATION TECHNOLOGY 2007
January 2530 2T Faculty of Computer Science University of Indonesia

HAND GESTURE RECOGNITION USING NEURAL NETWORKS FOR
ROBOTIC ARM CONTROL

Gumawan Ariyanto*, Pak Keung Patrick Lif, Hing-Wah Kwokt, Ge Yant

Scheel of Elecirical Engineering, Faculty of Engineering, Muhammadiyah University of Surakana
J1. A. Yani Tromol Pos 1, Pabelan, Kartasura, Surakarta 57102
«=ail- oarivanto@gmail.com*, {3060375,3134552,3017105} @cse.unsw.edu.auf

ABSTRAK

Hand gesture recasmition is one of well-research vision
systems prwgects. There are numerous projects which
use diffierens Sechmigues to tackle different aspect of
the profliess. Ia Shis paper, we present a project to use
hand gestare recegmition system for controlling a S
degree of Sresflomn rebotic arm, i.e. SCORBOT. We
use Casssii® Alserithm, Principal Component
Analysis (PCA) amd Artificial Neural Networks
(ANNs) =» baid the image-based hand gesture
recogmitien swstemn. Cam-shift is used to track the
hand immsse amd PCA is used to reduce the feature
dimensioms of imsse At the end of the recognition
systesn. we emples Artificial Neural Networks to
classify #he Smaee of static hand gestures. We have
successfully dewelaped natural language to control the
robet amd sur system is able to recognize six different
static hamd gestares (poses), handle some noise of
image aogussiiems process, and implement some
modes of rabwe comirel. The average performance of
the systesn 88 recesmize the static hand gestures is
larger tham "9, and the robot is able to do some
simple jobs B» wsing hand gesture language commands
as its impat.

Kata Emmes Ssmd gesture recognition, Cam-Shift, PCA,

Mazizish @emme Mamgmsl Selzn tzhun]. Revisi akhir [tanggal bulan
tahum]

1. INTRODUCTION

Hané gesmre secogmition is one of well-research vision
system peapects. Ihere are numerous projects which use
differest ®=cBmngmes o tackle different aspect of the
problem Seme of the projects are intended to be
implemess=d = s=al applications, such as to control the
industrasl sobet.

Visiom-Sesed hamd gesture recognition system to control
an indesaral sobet remotely using two cameras has been
build by Jssm W_ er al. [3]. They employed a fuzzy

clustering technique for recognizing tasks. I=
control the robot remotely, they have setup 2=
using TCP/IP communication protocol. Birk, ¥
used Principal Component Analysis to extract e &
of hand’s pose images and then employs a simgis &5
calculation of each vector to classify the images.

Another research in gesture recognition was &
at UNSW. Sze et al. [4] used Artificial Neurz! &
to recognize the hand’s pose image. The pur_
research is for controlling the robotic arm usime 55
Cube and simple hand gesture. Rubik’s cube w2 2
because of it is has six different colors on eact
they implemented cam-shift algorithm for ‘
cube.

Bradski, G. R. [2] introduced the cam-shif &
for object tracking based on color probability &=
The algorithm is an extension (the adaptive verss
previously available mean-shift algorithm. Ca
been successfully implemented for tracking the
objects, such as hand and face.

Another research paper which is reported by &
al. [5] used the idea of orientation histograms &
hand gestures. An image is first converted mse &
vector, which is then compared with feature ez
training set of gestures. Using a Euclidean dis=
the authors trained a system that could let the ==
a computer graphic crane by hand gestures as wei
games such as scissors/paper/stone.

In this paper, we present a project to use hamt
recognition system for controlling a 5 degres of &%
robotic arm, i.e. SCORBOT. We use cam-shift
PCA (Principal Component Analysis) and &3
Neural Networks to build the image-based hamt
recognition system.

2. ARCHITECTURE OF OUR SY

Our system architecture consists of three mam
i.e. vision/image processing, gesture recogms
robotic arm driver. Figure 1 shows the overall
of our system.

—peeERampie—

vision recognition robotic arm
system system driver &
moving controller

feature(s)

Figure 1 Overall architecture of our system

The vision system uses a frame grabber card to capture
motion by a composite camera. The camera is mounted at
the top of the shelf looking down on a back carpet placed
on the desktop where the user’s hand is operating on.
Using OpenCV, an open source visual processing library,
frames that grabbed by the camera is processed frame by
frame hence perform hand gesture recognition to interpret
user’'s command. These commands then send to the
robotic arm’s controller to perform predefined motion in
real time thus allow visual feedback to the user.

The robotic arm used in this project is called
SCORBOT, it is a robotic arm with 5 joints that can rotate
either horizontally or vertically or both, with the exception
of the clamp which opens and closes. It moves with a
relative co-ordinate system and each joint can be
controlled by commands sent from the computer that
interfaces with the SCORBOT.

The vision process, recognition system and robotic arm
driver is running on a 700MHz Pentium-base system
operating on Debian Linux stable release with OpenCV
version beta 4 installed.

2.1 Vision System

The vision system uses cam-shift algorithm to track the
user’s hand. For each video frame, the raw image is
converted to a color probability distribution image via a
color histogram model of the hand’s color being tracked.
Some constraints are applied in our vision system in order
to capture and track the user’s hand properly. The system
assumes the user’s hand is longer along extended finger
direction and by assuming that we can find an orientation
angle which we can use to adjust for palm axis rotation.
Due to that reason, user is advised to pull up their sleeve
so the orientation can be detected. The system is used in
an indoor environment where the light condition is more
constant.

Cam-shift Algorithm stands for Continuously Adaptive
Mean-Shift Algorithm, as the name suggests it is an
adaptive version of the mean shift algorithm. Cam-shift
and mean-shift works based on a color probability
distribution and a search window. While in mean-shift the
search window size is constant, in cam-shift it is able

413

either to shrink or to expand. Mean-shift algorithm is
initially started by choosing a search window size and its
initial location. The next step is to compute the mean
location in the search window based on equation 1. /(x,y)
is the pixel color probability value in the position (x,y) in
the image, My, is the zero moment, M), and My, are the
first moment for x and y respectively.

My, = Zzl(x,y)
My, =Y xI(x,y)
My =33 yI(x,7)

c=Muc My (1)
: Moo’ 3 My,

Then the coordinate of the mean location (C,, C,) is used
as the center of the search window. These steps are
repeated until the distance between the center and the
mean location less than the predefined threshold.

The cam-shift algorithm adjusts the search window size
based on the size and location of the probability
distribution which is changing in time when an interested
object in video sequences is moving and being tracked.
Window size is set to a function of the zero moment.

The output of the cam-shift algorithm is the search
window and its position is automatically changed to
follow the hand’s user movement. The search window is
labelled as a region of interest (ROI) and only the image
within the ROI will be processed further in the Gesture
Recognition System.

2.2 Gesture Recognition System

Gesture recognition system is broken down into two
main parts, i.e. the Principal Component Analysis (PCA)
and the Artificial Neural Networks (ANNs). PCA is used
to produce vector coefficients of an image given an eigen
system, and ANNs works to classify those coefficients
into some static hand gesture classes.

PCA is a method of reducing the dimension of the
problem state. In short, PCA constructs a representation of
the data with a set of orthogonal basis vectors generated
by a set of sample images. By choosing the most dominant
vectors, the dimension of the sample images is reduced at
the expense of little loss of information. By projecting a
matching image by the same dominant vectors, matching
to the sample images can be done by matching the
coefficients resulted by the projection. The number of
coefficients is equal to the number of dominant vectors
used for the projection.

Let us define an image as an object v = {u;, uz, us, ...,
u, } as a vector in the n-dimensional space. Its
components ; are the image pixel values an in this case n
is equal to the number of pixels in the image. Then,

HAND GESTURE RECOGNITION USING NEURAL NETWORKS FOR ROBOTIC ARM CONTROL
[Gunawan Ariyanto, Pak Keung Patrick Li, Hing-Wah Kwok, Ge Yan] é

consider a group of input objects we=dulial, TR R
where i = 1, 2, ..., m and usually m << n. The averaged
object @ = {al, i@, .., #@,} of this group is defined as
follows:

m
il 5 %
u=— u

m o

2)

Covariance matrix C = |c;| is a square symmetric matrix m
Xxm:

n

¢, = Z(ui/ —u) ' -1,)

I=1

3)

Eigen objects basis e {ei,, s é, Y=, e mp<m
of the input objects group may be calculated using the
following relation:

1 Z\/ik (llk/ —1u;) 4)

€ :TZ,\,:I

where N and V' = { VR Vv, } are eigenvalues and the
corresponding eigenvectors of matrix C. Any input object
u' as well as any other object u may be decomposed in the
eigen objects m;-D sub-space. Decomposition coefficients
of the object u are:

W, = Ze’)(u, =) 5)
=

In our system, a set of 60 images is used to create the
PCA system. The image size is 100 by 50 pixels and these
images are generated from the tracking (search) window
by the cam-shift algorithm. We also decide to choose 10
decomposition coefficients of the object (image). Based
on the description of our system above, we know that the
value of n = 5000, m = 60, and m, = 10.

Building the eigen objects is a once-off calculation at
the beginning of the program. After the eigen objects is
builded, the system will only calculate the decomposition
of coefficients vector of every new coming image. The
vector is as an output of the PCA system and will be
classified by ANNS.

OpenCV provides some libraries to implement PCA
algorithm. It has cvCalcEigenObjects to calculate the
eigen objects as well as the averaged object, and
cvEigenDecomposite to calculate the decomposition
coefficients of the image.

The next step is to use artificial neural networks to
classify the decomposition of coefficients vector from
PCA. We use three (3) layers feed forward neural
networks and back propagation error training algorithm.
The hidden layer employs tangent sigmoid as its

414

activation function and the output layer uses pure linear as
its activation function. The network structure consists of
10 input units, 16 hidden units, and 6 output units. We use
the neural networks to recognize 6 different static hand
gesture and those will be used as natural language
symbols to control the SCORBOT. The biggest value in
the nodes of output layer will define the class of the static
hand gesture. Figure 2 shows the structure of 3 layer feed
forward neural networks.

Hidden Layer Output Layer

Input

a1 = tansig (IW1:pr +bu a> =purelin (LWz1a1 +b2)

Figure 2 Three layer feed forward neural network

In order to train the ANNs, we use an offline training
strategy and choose MATLAB as an implementation tool.
There are some parameters that MATLAB need to run the
training process. Those parameters are the epoch number,
back propagation implementation method, learning rate,
and momentum rate. All parameters in Neural Network’s
training process and its corresponding value are described
in table 1.

Table 1 ANN’s training process parameters

‘Parameter Value i e
Epoch 1000

Back propagation Gradient descend back ;’
implementation’s method | propagation ’
Learning rate 0.1

Momentum rate 0.9

After we define the structure and training algorithm of
the neural networks, then we need to collect the training
data in a reasonable number. In order to make life easier,
we design to collect data online by capturing image every
80-100ms. The number of training data is quite huge, i.e.
about 2400 total of sample data with an average of 400
data for each gesture.

We create some piece of MATLAB code for this
purpose to read the training data file, to train the Neural
Networks, and then to save all the weights in a file. What
we get after training phase is a file of ANN’s weights that
contains the weights matrix of input layer, hidden layer.
and bias.

2.3 Robotic Arm Driver

The SCORBOT is a robotic arm with 5 joints that can
weate either horizontally or vertically or both, with the
sxception of the clamp which opens and closes. It moves
with a relative co-ordinate system and each joint can be
somtrolled by commands sent from the computer that
meerfaces with the SCORBOT. Each command sent to the
SCOORBOT consists of the joint and an integer unit which
s=presents the amount we wish to move the joint. Below is
» mble of the joints, their axis and the ratio between the
smeger unit and the angle.

Table 2 SCORBOT

10.7

963 | 90 degree Horizontal
units/degree
Shoulder | 756 | 90degree | 8.4 Vertical
i units/degree
| Elbow 756 | 90 degree | 8.4 Vertical
i units/degree
Wrist 190 180 degree | 1.05 Vertical
‘ units/degree
Wnist 190 | 180 degree | 1.05 Horizontal
units/degree
The clamp opens and closes with 190 units.

SCORBOT has an ability to receive and cache multiple
ommands at a time and perform relative co-ordinate
system. The relative co-ordinate system means that after a
command is sent to the SCORBOT and it starts moving,
%= SCORBOT will immediately update itself and process
#e following command with respect to the position it is
moving towards. For example, if a command is sent to the
SCORBOT to rotate the base clockwise 1000 units. Let us
say this takes 4 seconds, and 2 seconds later another
command sent to the SCORBOT to rotate the base anti-
dockwise 500 units, then the base will stop
mstntaneously. Any other command will move the
garticular joint in conjunction with the base.

Multiple joints can be moved simultaneously for the
SCORBOT, but due to the lack of control over the speed
of the joints, it is difficult to combine multiple-joint
=ovement to get to a desired position faster. Thus we
Sacus on moving single joint at a time.

l‘DEVELOPING NATURAL LANGUAGE
There are many factors which are taken into
emsideration for the development of natural language to
om0l the SCORBOT. The main question we need to
smewer is what we want the SCORBOT to do and what the
st natural way to achieve this.
Table 3 describes the natural language which we have

groposed.

415

NATIONAL CONFERENCE ON COMPUTER SCIENCE & INFORMATION TECHNOLOGY 2007
ISSN: 0126-2866 © 2007 Faculty of Computer Science University of Indonesia

s

Table 3 The Natural Language

by

Pose Hand Joint Joint Movement Mode

Movement
Left or Right Base Left or Right Relative

£ Up or Down Shoulder Up or Down Relative
Diagonals Elbow Up or Down Relative
Left or Right Base Left or Right Continuous
Up or Down Shoulder Up or Down Continuous
Diagonals Elbow Up or Down Continuous
Left or Right Wrist Twist Relative
Up or Down Wrist Up or Down Relative
Writing N/A N/A Writing
N/A N/A N/A Global

Stop

3.1 Determining the Direction of Movement

We restrict potential movement to the eight-directions
up, down, left, right and their respective diagonals.

Figure 3 the directions of movement

We consider using a full 360 degrees of movement, and
decide to split the grid into eight equal pieces as in figure
3, which would determine the direction of movement from
the user.

Figure 4 the area of movement

From figure 4, any movement from the centre point
(where user’s hand is) into the yellow area would be
detected as a left movement. The centre point is the

HAND GESTURE RECOGNITION USING NEURAL NETWORKS FOR ROBOTIC ARM CONTROL
[Gunawan Ariyanto, Pak Keung Patrick Li, Hing-Wah Kwok, Ge Yan]

current location of the hand. Movement is detected only
between two frames.

3.2 Determining the Type and Mode of
Movements

We decide on two different control types, controlling
the arm in real-time movements and controlling the arm
with pre-defined movements.

Real-time movement is, as the name suggests moving,
the SCORBOT relative to the movement of the hand in
the frame. With real-time movement, there are two
distinct control modes. These are continuous movement
mode and relative movement mode.

Continuous mode is useful for moving the SCORBOT
in large distances. If for example user need to move the
base left 180 degrees it seems more natural to just hold
their hand in a left position and allow the SCORBOT to
move continuously until the user tells it to stop, rather
than issue many smaller left commands until it reaches
where the user want the arm to be. To initiate continuous
mode, the user places their hand in the “centre box” and
then move their hand in one of the eight directions. If the
user holds their hand in that direction, the joint would
continue to move in that direction until the user moves
away or changes their hand gestures. Continuous mode is
only implemented for the base, shoulder and elbow. It is
decided that the movement time of the wrist and clamp are
too short to warrant the need for continuous movement.

Relative mode is used to move the SCORBOT in a
more precise manner. The arm moves in exactly the same
way user’s hand moves in the frame. If the hand is moving,
the SCORBOT is moving, if the hand stops moving, the
SCORBOT stops moving. This is useful for more
precision movement. For example if user is trying to line
the arm up to pick something up, the user can use relative
mode to just to get the arm to the exact location they want
it. Relative mode can be activated from anywhere in the
frame. And relative mode is only terminated once the user
changes their hand gestures. Similar to continuous mode,
a command is sent to the SCORBOT telling it which
direction to move. The difference being that each time the
hand stopped moving, a stop command is sent to the
SCORBOT. Relative mode is implemented for all the
joints, except the clamp.

The SCORBOT can be pre-programmed to perform
specific tasks. The reason this may be useful is if there is a
repetitive task that user would like the arm to perform, and
it would become tedious for the user to use either the
relative or continuous mode to get the arm into the right
position. However, through pre-defined movements it
could save a whole lot of tedious movement.

416

Figure 5 the domain of pre-ened movements

The domain of pre-defined movements is a checker
board domain like in figure 5. The checker board as
shown above has got x and y grid coordinates. The
SCORBOT has been pre-programmed with how to pick
up and put down checker pieces. We decide that the input
method is to get the user to virtually “write” the co-
ordinates of the piece which they want to pick up and then
“write” the co-ordinates of the position they want to place
the piece.

There is one control mode for pre-defined movement,
i.e. writing mode. The user activates writing mode by
showing the gesture for writing. Once in writing mode, all
the other gestures are disabled. Thus, user can not move
the SCORBOT in relative or continuous mode. To re-enter
real-time mode, the gesture for abort needs to be shown.

Tabel 4. The Drawing of Hand Gesture

Number | Drawing | Instructions

1 l Down

2 Right, Down, Left, Down, Right

3 Right, Down, Left, Right, Down,

Left

4 l Down, Right, Down

5 Left, Down, Right, Down, Left
4. RESULT

The overall system can maintain 10-12fps which is
considered running in real-time environment. The tracking
module using cam-shift works quite well for images with
static and uniform background. Without any intrusion of
skin colored object, the tracking result is excellent.

On the best of times, the neural network was 90-95%
accurate. Table 3 shows the performance and accuracy of
the neural networks on 6 different static hand gestures.

NATIONAL CONFERENCE ON COMPUTER SCIENCE & INFORMATION TECHNOLOGY 2007
ISSN: 0126-2866 © 2007 Faculty of Computer Science University of Indonesia

SCORBOT was able to do some simple job in real time
such as dispatching small and light stuffs based on hand
gesture command. The pre-defined movement also
worked smoothly to do some simple repetitive tasks like
moving stuff from one position to another position based
on cheek board coordinate.

Table 5. Neural Networks accuracy

Static ~ Hand CE
Gesture Image | Number of True iNumberofFaIse Percent of
Accuracy
381 17 95.7%
477 49 90.7%
410 1 97.4%
570 20 ©196.6%
47 17 96.5%
456 16 96.6%
5. CONCLUSION

This paper has presented an alternative solution for
controlling robotic arm using hand gesture. Our solution is
based on some algorithms ranging from image processing
and computer vision to pattern recognition algorithm.
Cam-shift algorithm helps to maintain the orientation and
position of hand’s pose image and PCA is implemented in
order to extract the features of images. Eventually, the
artificial neural networks works as a recognition system to
classify the decomposition of coefficients vector of each
hand poses into its corresponding natural language. The
experimental results show that the system is able to do its
job fairly good with 90-95% accuracy.

6. ACKNOWLEDGMENT

The authors appreciate the Robotics Laboratory of The
School of Computer Science, The University of New
South Wales, Australia, for providing the SCORBOT and
other facilities used in this research project.

REFERENSI

[1] Birk, H.; Moeslund, T. B., “Recognizing Gesture From the
Hand Alphabet Using Principal Component Analysis”,
Master’s Thesis, Laborarory of Image Analysis, Aalborg
University, Denmark, 1996.

[2] Bradski,G.R, “Computer Visions Face Tracking As A
Component of A Perceptual User Interface”, Workshop on

B3]

(4]

(5]

(6]

Applications of Computer Vision, Princeton, NJ, 1998,
pages 214-219.

Juan, W.; Uri, K., "Hand Gesture Telerobotic System
Using Fuzzy Clustering Algorithms”, Integrated Project
Report, Ben-Gurion University of the Negev, 2001.

Sze, I; Kong, A.; Li, J., “Robot Control Using Gesture”,
Experimental Robotics Project Report, School of
Computer Science and Engineering, UNSW, Sydney, 2004.
Roth, M.; Freeman, W., “Orientation Histogram for Hand
Gesture Recognition”, International Workshop on
Automatic Face and Gesture Recognition, Zurich, 1995.
Open Source Computer Vision Library Reference Manual,
Intel Corporation, 2001.

	1.pdf (p.1)
	2.pdf (p.2)
	3.pdf (p.3)
	4.pdf (p.4)
	5.pdf (p.5)
	6.pdf (p.6)

