dc.identifier.citation | Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., Sankoh, O., Myers, M. F., George, D. B., Jaenisch, T., William Wint, G. R., Simmons, C. P., Scott, T. W., Farrar, J. J., & Hay, S. I. (2013). The global distribution and burden of dengue. Nature, 496(7446), 504–507. https://doi.org/10.1038/nature12060 BPS Banjarbaru. (2013). Gambaran Umum Wilayah. In BPS Banjarbaru (Vol. 53, Issue 9). https://doi.org/10.1017/CBO9781107415324.004 Day, J. F. (2016). Mosquito oviposition behavior and vector control. Insects, 7(4), 1–22. https://doi.org/10.3390/insects7040065 Delatte, H., Desvars, A., Bouétard, A., Bord, S., Gimonneau, G., Vourc’h, G., & Fontenille, D. (2010). Blood-feeding behavior of aedes albopictus, a vector of chikungunya on la réunion. Vector-Borne and Zoonotic Diseases, 10(3), 249–258. https://doi.org/10.1089/vbz.2009.0026 Diaz, J. H. (2016). Preparing the United States for Zika Virus: Pre-emptive Vector Control and Personal Protection. Wilderness and Environmental Medicine, 27(4), 450–457. https://doi.org/10.1016/j.wem.2016.07.006 Dzul-Manzanilla, F., Ibarra-López, J., Marín, W. B., Martini-Jaimes, A., Leyva, J. T., Correa-Morales, F., Huerta, H., Manrique-Saide, P., Vazquez-Prokopec, G. M., & Day, J. (2018). Indoor resting behavior of Aedes aegypti (Diptera: Culicidae) in Acapulco, Mexico. Journal of Medical Entomology, 54(2), 501–504. https://doi.org/10.1093/jme/tjw203 Farajollahi, A., & Price, D. C. (2013). A Rapid Identification Guide for Larvae of the Most Common North American Container-Inhabiting Aedes Species of Medical Importance. Journal of the American Mosquito Control Association, 29(3), 203–221. https://doi.org/10.2987/11-6198r.1 Farnesi, L. C., Barbosa, C. S., Araripe, L. O., & Bruno, R. V. (2018). The influence of a light and dark cycle on the egg laying activity of Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Memorias Do Instituto Oswaldo Cruz, 113(4), 4–9. https://doi.org/10.1590/0074-02760170362 Hidayati, L., Hadi, U. K., & Soviana, S. (2017). Pemanfaatan ovitrap dalam pengukuran populasi Aedes sp . dan penentuan kondisi rumah Utilization of ovitraps in Aedes sp . population measurements. Jurnal Entomologi Indonesia, 14(3), 126–134. https://doi.org/10.5994/jei.14.3.126 Indrasari, W., Rudijanto, H., & Wardono, I. (2015). Pengaruh perasan daun babadotan (Ageratum conyzoides) sebagai repellent terhadap daya hinggap nyamuk Aedes aegypti di loka litbang P2B2 Ciamis tahun 2015. Keslingmas, 34, 261–265. Jose Genaro, O.-G., Roberto, M.-H., Adriana E., F.-S., & Ildefonso, F.-S. (2001). The use of sticky ovitraps to estimate dispersal of Aedes Aegypti in Northeastern Mexico. Journal of the American Mosquito Control Association, 17(2)(2), 93–97. Kazembe, T.C. and S. Nkomo, S. (2012). Use of Blumea alata, Bidens pilosa and Chenopodium ambrosioides as Mosquito Repellents and Mosquitocides. Bull. Environ. Pharmacol. Life Sci., 1(7) 59 - 66 Kementerian kesehatan Repubelik Indonesia. (2018). Data dan Informasi profil Kesehatan Indonesia 2018. Mahan, J. R., Payton, P. R., & Laza, H. E. (2016). Seasonal canopy temperatures for normal and okra leaf cotton under variable irrigation in the field. Agriculture (Switzerland), 6(4). https://doi.org/10.3390/agriculture6040058 Mangudo, C., Aparicio, J. P., & Gleiser, R. M. (2011). Tree holes as larval habitats for Aedes aegypti in public areas in Aguaray, Salta province, Argentina. Journal of Vector Ecology, 36(1), 227–230. https://doi.org/10.1111/j.1948-7134.2011.00162.x Martinez-Ibarra, Alejandro, J., Rodriguez, Arredondo-Jimenez, I., M. H. J., & Yuval, B. (1997). Influence of Plant Abundance on Nectar Feeding by Aedes aegypti (Diptera: Culicidae) in Southern Mexico. Journal of Medical Entomology, 34(6), 589–593. https://doi.org/https://doi.org/10.1093/jmedent/34.6.589 Masuod, W. A. M. (2014). Larvicidal potentiality of the bandotan (Ageratum conyzoides) leaves for controlling the three important species of mosquitoes (Aedes aegypti , Culex quinquefasciatus and Anopheles maculatus). In Thesis. Sebelas Maret University Mukwaya, L. G. (1974). Host preference in Aedes (Stegomyia) mosquitoes in Uganda. II. Studies on indoor and outdoor biting and resting behaviour with special reference to Aedes aegypti L. Acta Tropica, 31(2), 165–176. Obenauer, P. J., Allan, S. A., & Kaufman, P. E. (2010). Aedes albopictus (Diptera: Culicidae) oviposition response to organic infusions from common flora of suburban Florida. Journal of Vector Ecology, 35(2), 301–306. https://doi.org/10.1111/j.1948-7134.2010.00086.x Paul, K. K., Dhar-Chowdhury, P., Emdad Haque, C., Al-Amin, H. M., Goswami, D. R., Heel Kafi, M. A., Drebot, M. A., Robbin Lindsay, L., Ahsan, G. U., & Abdullah Brooks, W. (2018). Risk factors for the presence of dengue vector mosquitoes, and determinants of their prevalence and larval site selection in Dhaka, Bangladesh. PLoS ONE, 13(6), 1–19. https://doi.org/10.1371/journal.pone.0199457 Polson, K. A., Curtis, C., Seng, C. M., Olson, J. G., Chantha, N., & Rawlins, S. C. (2002). The use of ovitraps baited with hay infusion as a surveillance tool for Aedes aegypti mosquitoes in Cambodia. Dengue Bulletin, 26, 178–184. Qualls, W. A., Naranjo, D. P., Subía, M. A., Ramon, G., Cevallos, V., Grijalva, I., Gómez, E., Arheart, K. L., Fuller, D. O., & Beier, J. C. (2016). Movement of Aedes aegypti following a sugar meal and its implication in the development of control strategies in Durán, Ecuador. Journal of Vector Ecology, 41(2), 224–231. https://doi.org/10.1111/jvec.12217 Rajmohan, D., & Logankumar, K. (2011). Studies on the insecticidal properties of Chromolaena odorata (Asteraceae) against the life cycle of the mosquito, Aedes aegypti (Diptera: culicidae). Journal of Research in Biology, 1(4), 253–257. Satoto, T. B. T., Diptyanusa, A., Setiawan, Y. D., & Alvira, N. (2017). Environmental factors of the home affect the density of Aedes aegypti ( Diptera : Culicidae ). Jurnal Kedokteran Yarsi. 25(1), 41–51. Schoof, H. F. (1967). Mating, resting habits and dispersal of Aedes aegypti. Bulletin of the World Health Organization, 36(4), 600–601. Senthilkumar, N., Varma, P., & Gurusubramanian, G. (2009). Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res., 104(2), 237–244. https://doi.org/10.1007/s00436-008-1180-4 Susanti, S., & Suharyo, S. (2017). Hubungan Lingkungan Fisik Dengan Keberadaan Jentik Aedes Pada Area Bervegetasi Pohon Pisang. Unnes Journal of Public Health, 6(4), 271–276. https://doi.org/10.15294/ujph.v6i4.15236 Swaminathan, S., & Khanna, N. (2019). Dengue vaccine development: Global and Indian scenarios. International Journal of Infectious Diseases, 84, S80–S86. https://doi.org/10.1016/j.ijid.2019.01.029 Tandon, N., & Ray, S. (2000). Host Feeding Pattern of Aedes aegypti and Aedes albopictus in Kolkata India. 24, 117–120. Tang, C. S., Lam-Phua, S. G., Chung, Y. K., & Giger, A. D. (2007). Evaluation of a grass infusion-baited autocidal ovitrap for the monitoring of Aedes aegypti (L.). Dengue Bulletin, 31, 131–140. Taylor, B., & Jones, M. D. (1969). The circadian rhythm of flight activity in the mosquito Aedes aegypti (L.). The phase-setting effects of light-on and light-off. Journal of Experimental Biology, 51(1), 59–70. Timmermann, S. E., & Briegel, H. (1996). Effect of plant, fungal and animal diets on mosquito development. Entomologia Experimentalis et Applicata, 80(1), 173–176. https://doi.org/10.1111/j.1570-7458.1996.tb00913.x Trpis, M. (1972). Breeding of Aedes aegypti and A. simpsoni under the escarpment of the Tanzanian plateau. Bulletin of the World Health Organization, 47(1), 77–82. White, R. H., & Lord, E. (1975). Diminution and enlargement of the mosquito rhabdom in light and darkness. Journal of General Physiology, 65(5), 583–598. https://doi.org/10.1085/jgp.65.5.583 Wirastuti, H. A. (2016). Kemampuan efektivitas ekstrak daun kenikir (Cosmos caudatus K) dibandingkan dengan soffell aroma kulit jeruk sebagai repellent terhadap nyamuk Aedes aegypti. Jurnal Penelitian Kesehatan Suara Forikes, 7(2), 81–84. World Health Organisation. (2017). Global Vector Control Response 2017-2030. | id_ID |