Show simple item record

dc.contributor.authorHendro PH
dc.date.accessioned2014-12-03T01:21:50Z
dc.date.available2014-12-03T01:21:50Z
dc.date.issued2014-12-04
dc.identifier.citation[1] Akbar. Ganda Rizkyan, Studi Pembangkit Listrik Tenaga Angin Laut untuk Memenuhi Kebutuhan Penerangan Jembatan Suramadu, Tesis : Institut Teknologi Sepuluh November, Malang, 2009. [2] Anonim, diakses Pebruari 2014, ADEOS-II Wind Ocean, www.podaac.jpl.nasa.gov. /ADEOS-II [3] Bergey. M, Small Wind Sistems For Rural Energi Supply, Village Power 2000, Washington, DC, USA, 2000. [4] Budiarto, Rachmawan, Kebijakan Energi, Penerbit : Samudra Biru, Bantul, 2011. [5] Burton. Tony, David Sharpe, Nick Jenkins, Ervin Bossanyi, Wind Power Handbooks, Jhon Wiley and Sons, Ltd. England, 2001. [6] Hartati. Sri Sunarmo, Penginderaan Jauh dan Pengenalan Sistem Informasi Geografis Untuk Bidang Ilmu Kebumian, Penerbit : ITB, Bandung, 2009 [7] Hartono, SPSS 16.0 Analisis Data Statistik dan Penelitian, Penerbit : Pustaka Pelajar dan Zanava, Yogyakarta, 2013. [8] Hiester, T.R. and Pennell, W.T, The Siting Handbook for Large Wind Energi Systems, WindBooks, New York, NY, USA, 1981. [9] J.L Torres, A. Garcia, M. De Blas, A De Francisco, Forecast of hourly average wind speed with ARMA model in Navarre (Spain), Solar Energy, ELSEVIER, 2004. [10] Kusumadewi. Sri, Analisis dan Desain Sistem Fuzzy Menggunakan Toolbox Matlab, Penerbit Graha Ilmu, Yogyakarta, 2002. [11] Lanuru. Mahatma, dan Suwarni, Pengantar Oseanografi, Fakultas Ilmu Kelautan dan Perikanan. Makassar, 2011. [12] Le Gouriérès, D, Wind Power Plants: Theory and Design, Pergamon Press, 1982. [13] Lei. Ma, Luan Shiyan, Jiang Chuanwen, Liu Hongling, Zhang Yan, A review on the forecasting of wind speed and generated power, Renewable and sustainable review, Elsevier, 2008. [14] CP LO, Pengideraan Jauh Terapan, Penerbit Universitas Indonesia, Jakarta, 1996. [15] Maidment, RD, Handbook of Hydrology, McGraw-Hill, New York, 1989. [16] Naba. Agus, Belajar Cepat Fuzzy Logic Menggunakan Matlab, Penerbit : Andi. Yogyakarta, 2009. [17] Ning Chen, Qi Wang, Liangzhong Yao, Lingzhi Zu, Yi Tang, Fubao Wu, Mei Chen, Ningbo Wang, Wind power forecasting error-based dispatched method for wind farms cluster, J. Mod. Power. Syst. Clean Energy, Springer, 2013. [18] Purba, Noir P, The Wind and Sea Waves Variability as a Renewable Energy in the Southern West Java, Jurnal Akuatika Vol.5 no:1 Maret, 2014. [19] RETScreen, Clean Energi Project Analysis, CANMET Energi Technology, Canada, 2004.. [20] Russell, G.L, J.R. Miller, and D. Rind, A coupled atmosphere-ocean model for transient climate change studies, Atmos.-Ocean, 33, 683-730, 1995. [21] Tim Vasquez, Observer Handbook, Weather Graphics Technologies, Washington DC, US, 1998. [22] Tjasyono. Bayong HK, Meteorologi Terapan, Penerbit : ITB, Bandung, 2008. [23] Wibisono. Yusuf, Metode Statistik, Gadjah Mada University Press, Yogyakarta, 2009. [24] National Renewable Energy Laboratory, QuikSCAT - Annual Wind Power Density at 10m, U.S Department of Energy, 2005. [25] Tiejun. Ling, Zhang Yunfei, Yang Xuelian, Li Xuekun, Ji Xiaoyang, The application of MM5 model to predict sea surface wind field, The Twelfth OMISAR Workshop on Ocean Model, 2003.en_US
dc.identifier.issn2407-4330
dc.identifier.urihttp://hdl.handle.net/11617/4968
dc.description.abstractHow much energy prediction can be produced very important in electric energy markets. Electrical energy was sold before the actual energy produced is very important for the economic balance a power companies. Thus require analysis of wind speed as a potential source of energy. Analysis of wind speed were calculated using Sugeno’s fuzzy with wind speed data based on the 24-year period data. An analysis of wind energy, the output value is based an analysis with assumes a constant density atmosphere, where is density of the air has a fixed value from sea surface level to top atmosphere. The model of Sugeno’s fuzzy wind prediction system designed for first order, second order, third order, fourth order, twelfth order and twelfth order modified. Overall models can not follow pattern of data test. Then selected models Sugeno’s fuzzy twelfth order, because have a small RMSE values. Furthermore, the wind speed prediction system and analysis of wind energy are designed using Graphic User Interface (GUI) in Matlab R2013a. Results are based variable height from ground level, shows that the value of wind energy potential in Gunung Kidul higher than Bantul and Kulon Progo.en_US
dc.publisherUniversitas Muhammadiyah Surakartaen_US
dc.subjectWind Velocityen_US
dc.subjectFuzzy Logicen_US
dc.subjectForecasting and Class of Energyen_US
dc.titleAnalysis Of Wind Speed South Sea As a Potential Source Of Renewable Energy D.I Yogyakarta Based On Satellite Remote Sensing Data Using Fuzzy Logicen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record