Show simple item record

dc.contributor.authorSuseno
dc.contributor.authorPujiastuti, Peni
dc.date.accessioned2014-12-03T09:14:44Z
dc.date.available2014-12-03T09:14:44Z
dc.date.issued2014-12-04
dc.identifier.citation[1] Alaerts, G. dan Santika, S.S., 1987, “Metoda Penelitian Air”, Usaha Nasional, Surabaya. [2] Astuti, F. (2004), “Pengolahan Limbah Cair Industri Batik dengan Koagulan dan Penyaringan”, Tesis Magister, Program Pascasarjana, Universitas Gadjah Mada, Yogyakarta. [3] BPPT, (1999), “ Teknologi Pengolahan Air: Cara Pengolahan Air Sumur Untuk Kebutuhan Air Minum dengan Filter Ganda” BPPT: Jakarta. [4] Cahyaningrum, S. E. 2001. Karakteristik Adsorpsi Ni (II) dan Cd (II) pada Kitosan dan Kitosan Sulfat [5] dari Cangkang Udang Windu (penausm onodon), Tesis Pasca Sarjana , UGM, Jogjak arta. [6] Darjito. 2001. Karakterisasi Adsorpsi Co(II ) dan Cu(II) pada Adsorben Kitosan Sulfat, Tesis Program Pasca Sarjana, UGM, Yogyakarta. [7] FKBL, (2008), “Panduan Operasional: Pengelolaan Instalasi Pengolahan Air Limbah (IPAL) Kampoeng Batik Laweyan Kota Surakarta” FKBL: Solo. [8] Industri Batik Mahkota, 2008, “ Proses Pembuatan Batik” , Surakarta [9] Joglosemar, (14-02-2009), “Warga Keluhkan Bau IPAL Laweyan, harian Joglo Semar”, edisi 14 Februari 2009, http://harianjoglosemar.com [10]Kedaulatan Rakyat, Januari 2009, “Produksi Bersih dari ‘Kampoeng Batik’ Laweyan” 22/03/2009. [11]Mahatmanti, F.W. 2001. Studi Adsorben Lo gam seng(II) dan Timbal (II) pada [12] Kitosan dan Kitosan Sulfat dari Cangkan g Udang Windu (PenousMonodon), Tesis Program Pasca Sarjana, UGM, Yogyakarta. [13]Mahida, U.N, 1986, “Pencemaran Air dan Pemanfaatan Limbah Industri”, Rajawali Press, p.23, Jakarta [14]Masriati R.(2006), “Pengolahan Limbah Cair Industri Kerajinan Songket Tradisional dengan Adsorbsi Menggunakan Kabon Aktif”, Tesis Program Magister Teknik Kimia, Program Pasca Sarjana Universitas Sriwijaya Palembang. [15]Mu’minah, (2008), “Aplikasi Kitosan Sebagai Koagulan Untuk Penjernihan Air Keruh”, Tesis, Program Pascasarjana, ITB, Bandung. [16] No. H, Lee and Meyers S.P. 2000. Core lation Between Physicochemichal Characteristic and Binding Capacities on Chitosan Product, Journal of Food Science, Vol 65 no 7 1134-1137. [17]Pujiastuti, P, (2003), “Sebaran Karakteristik Air Limbah Industri Batik Sebagai Sumber Utama Pencemaran Air Tanah Dangkal Di Sentra Batik Laweyan Surakarta” Prosiding Workshop Litbang Balai Besar Kulit & Tekstil Yogyakarta, ISBN 979-8379-08-3 [18] Puspitasari A (2007). Pembuatan Dan Pemanfaatan Kitosan Sulfat Dari Cangkang Bekicot (Achatina Fullica) Sebagai Adsorben Zat Warna Remazol Yellow Fg 6, Skripsi UNS Surakarta [19] Sari, TI, Ali F., dan Rafsanjani, B. (2006), “Pembuatan Karbon Aktif dari Ampas Tebu dan Aplikasinya dalam Pengolahan Limbah Cair”, Jurnal Teknik Kimia no. 4 Vol 10, hal 1-1-6, Universitas Sriwijaya Palembang. [20] Sastrohamidjoyo H., 2001, Spektroskopi, Liberty, Yogyakarta [21] Soedarsono dan Syahputra, B (2007), “Pengolahan Air Limbah Batik dengan Proses Kombinasi Elektrokimia, Filtrasi dan Adsorbsi”, Laporan Penelitian, Fakultas Teknik, Jurusan Teknik Lingkungan, Universitas Sultan Agung, Semarang. [22]Widodo A, Mardiah, dan Andy Prasetyo, (2005), “Potensi Kitosan Dari Sisa Udang Sebagai Koagulan Logam berat Limbah Cair Industri Tekstil” , Jurnal Teknik Kimia, ITS, Surabaya.en_US
dc.identifier.issn2407-4330
dc.identifier.urihttp://hdl.handle.net/11617/5000
dc.description.abstractIt has been modeled Wastewater Treatment Plant (WWTP) and conducted experiments of wastewater treatment in Kampung Batik Laweyan solo using a model of the WWTP. WWTP consists of three tubs, where number 1 of tub is used to hold unprocessed waste, number 2 is used for coagulation and number 3 is used for the process of sedimentation. Sewage treatment experiment conducted by flowing sewage from number 1 of tub the nember 2. In the number 2 of tub, Chitosan Sulfate added and stirring, after which the sewage flowed into the number 3. Number 3 of tub is a sectional tub so that clots will hit the bulkhead and then a process of sedimentation. The output of the number 3 is the waste that has been processed and then analyzed its COD parameter. The experiments made from the variation of waste flow rate and the speed of affixing chitosan sulfate. Variations in flow rate of the waste that is: 2 L / h, 3 L / h, 4 L / h, 5 L / h and 6 L / h. For each flow rate of the waste created variation rate of addition of chitosan sulfate, that is 50 mg / min, 100 mg / min, 200 mg / min, 300 mg / min and 400 mg / min. For each variation of these experiments determined the percentage reduction in COD. Consider from the waste flow rate, the experimental results showed that the greater of the flow rate causes the smaller of the percentage of COD reduction, where the percentage reduction in COD seen constant starting at a flow rate of waste 3 liter / hour. Consider from the rate of Chitosan Sulfate addition, experimental results show that the faster addition of chitosan sulfate causes percentage reduction in COD greater, where the percentage reduction in COD seen constant starting at a speed addition of Chitosan Sulfate 300 mg / min.It can be concluded that the optimum flow rate of the waste is 3 liters / hour, while the optimum speed of Chitosan Sulfate affixing is 300 mg / min. Keywords: chitosan, chitosan sulfate, coagulation, CODen_US
dc.publisherUniversitas Muhammadiyah Surakartaen_US
dc.subjectchitosanen_US
dc.subjectchitosan sulfateen_US
dc.subjectcoagulationen_US
dc.subjectCODen_US
dc.titleStudy of Waster Water Treatment by Laboratory Model of WWTP Through Coagulation Process Using Chitosan Sulphate Viewed from COD Parametersen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record