Show simple item record

dc.contributor.authorPutra, Ryan Anugrah
dc.contributor.authorLucas, Dirk
dc.date.accessioned2016-08-05T01:27:36Z
dc.date.available2016-08-05T01:27:36Z
dc.date.issued2016-08-01
dc.identifier.citationBrackbill, J. U., Kothe, D. B., & Zemach, C. (1992). A continuum method for modeling surface tension. Journal of Computational Physics, 100(2), 335-354. doi:http://dx.doi.org/10.1016/0021-9991(92)90240-Y Deendarlianto, Höhne, T., Lucas, D., Vallée, C., & Zabala, G. A. M. (2011). CFD studies on the phenomena around counter-current flow limitations of gas/liquid two-phase flow in a model of a PWR hot leg. Nuclear Engineering and Design, 241(12), 5138-5148. doi:http://dx.doi.org/10.1016/j.nucengdes.2011.08.071 Deendarlianto, Höhne, T., Lucas, D., & Vierow, K. (2012). Gas-liquid countercurrent two-phase flow in a PWR hot leg: A comprehensive research review. Nuclear Engineering and Design, 243, 214-233. doi:10.1016/j.nucengdes.2011.11.015 Deendarlianto, Vallée, C., Lucas, D., Beyer, M., Pietruske, H., & Carl, H. (2008). Experimental study on the air/water counter-current flow limitation in a model of the hot leg of a pressurized water reactor. Nuclear Engineering and Design, 238(12), 3389-3402. doi:http://dx.doi.org/10.1016/j.nucengdes.2008.08.003 Deendarlianto, Vallée, C., Lucas, D., Beyer, M., Pietruske, H., & Carl, H. (2011). Erratum: Experimental study on the air/water counter-current flow limitation in a model of the hot leg of a pressurized water reactor (Nuclear Engineering and Design). Nuclear Engineering and Design, 241(8), 3359-3372. doi:10.1016/j.nucengdes.2011.02.028 Frank, T., Zwart, P. J., Krepper, E., Prasser, H. M., & Lucas, D. (2008). Validation of CFD models for mono- and polydisperse air–water two-phase flows in pipes. Nuclear Engineering and Design, 238(3), 647-659. doi:http://dx.doi.org/10.1016/j.nucengdes.2007.02.056 Hänsch, S., Lucas, D., Höhne, T., & Krepper, E. (2014). Application of a new concept for multi-scale interfacial structures to the dam-break case with an obstacle. Nuclear Engineering and Design, 279, 171-181. doi:http://dx.doi.org/10.1016/j.nucengdes.2014.02.006 Hänsch, S., Lucas, D., Krepper, E., & Höhne, T. (2012). A multi-field two-fluid concept for transitions between different scales of interfacial structures. International Journal of Multiphase Flow, 47, 171-182. doi:http://dx.doi.org/10.1016/j.ijmultiphaseflow.2012.07.007 Höhne, T. (2013). Modelling and validation of turbulence parameters at the interface of horizontal multiphase flows. Paper presented at the The 8th international conference multiphase flow, ICMF, Jeju, Korea. Höhne, T., Deendarlianto, & Lucas, D. (2011). Numerical simulations of counter-current two-phase flow experiments in a PWR hot leg model using an interfacial area density model. International Journal of Heat and Fluid Flow, 32(5), 1047-1056. doi:http://dx.doi.org/10.1016/j.ijheatfluidflow.2011.05.007 Höhne, T., Geissler, T., Bieberle, A., & Hampel, U. (2015). Numerical modeling of a horizontal annular flow experiment using a droplet entrainment model. Annals of Nuclear Energy, 77, 351-360. doi:http://dx.doi.org/10.1016/j.anucene.2014.11.041 Höhne, T., & Mehlhoop, J.-P. (2014). Validation of closure models for interfacial drag and turbulence in numerical simulations of horizontal stratified gas–liquid flows. International Journal of Multiphase Flow, 62, 1-16. doi:http://dx.doi.org/10.1016/j.ijmultiphaseflow.2014.01.012 Höhne, T., & Vallée, C. (2010). Experiments and numerical simulations of horizontal two-phase flow regimes using an interfacial area density model. The Journal of Computational Multiphase Flows, 2(3), 13 Krepper, E., Lucas, D., Frank, T., Prasser, H.-M., & Zwart, P. J. (2008). The inhomogeneous MUSIG model for the simulation of polydispersed flows. Nuclear Engineering and Design, 238(7), 1690-1702. doi:http://dx.doi.org/10.1016/j.nucengdes.2008.01.004 Krepper, E., Lucas, D., & Prasser, H.-M. (2005). On the modelling of bubbly flow in vertical pipes. Nuclear Engineering and Design, 235(5), 597-611. doi:http://dx.doi.org/10.1016/j.nucengdes.2004.09.006 Krepper, E., & Prasser, H. M. (1999). Measurements and CFX-simulations of a bubbly flow in a vertical pipe. Paper presented at the CFX International Users Conference, Friedrichshafen. Krepper, E., Zidouni, F., & Lucas, D. (2015). Analysis and applications of a generalized multi-field two fluid approach for plunging jet configuration. Paper presented at the NURETH-16, Chicago, IL. Liao, Y., & Lucas, D. (2009). A literature review of theoretical models for drop and bubble breakup in turbulent dispersions. Chemical Engineering Science, 64(15), 3389-3406. doi:http://dx.doi.org/10.1016/j.ces.2009.04.026 Liao, Y., & Lucas, D. (2010). A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical Engineering Science, 65(10), 2851-2864. doi:http://dx.doi.org/10.1016/j.ces.2010.02.020 Liao, Y., Lucas, D., Krepper, E., & Schmidtke, M. (2011). Development of a generalized coalescence and breakup closure for the inhomogeneous MUSIG model. Nuclear Engineering and Design, 241(4), 1024-1033. doi:http://dx.doi.org/10.1016/j.nucengdes.2010.04.025 Lo, S. M. (1996). Application of population Balance to CFD modeling of bubbly flow via the MUSIG model (AEAT–1096). Retrieved from Lucas, D., Beyer, M., Kussin, J., & Schütz, P. (2010). Benchmark database on the evolution of two-phase flows in a vertical pipe. Nuclear Engineering and Design, 240(9), 2338-2346. doi:http://dx.doi.org/10.1016/j.nucengdes.2009.11.010 Lucas, D., Beyer, M., Szalinski, L., & Schütz, P. (2010). A new database on the evolution of air–water flows along a large vertical pipe. International Journal of Thermal Sciences, 49(4), 664-674. doi:http://dx.doi.org/10.1016/j.ijthermalsci.2009.11.008 Lucas, D., Krepper, E., & Prasser, H.-M. (2001). Prediction of radial gas profiles in vertical pipe flow on the basis of bubble size distribution. International Journal of Thermal Sciences, 40(3), 217-225. doi:http://dx.doi.org/10.1016/S1290-0729(00)01211-4 Luo, H., & Svendsen, H. F. (1996). Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE Journal, 42(5), 1225-1233. doi:10.1002/aic.690420505 Ma, J., Oberai, A. A., Drew, D. A., Lahey Jr, R. T., & Hyman, M. C. (2011). A comprehensive sub-grid air entrainment model for RANS modeling of free surface bubbly flows. Journal of Computational Multiphase Flows, 3, 16. Montoya, G., Baglietto, E., & Lucas, D. (2015). Implementation and validation of a surface tension model for the multi-scale approach GENTOP. Paper presented at the NURETH-16, Chicago, IL. Montoya, G. A. (2015). Development and validation of advanced theoretical modeling for churn-turbulent flows and subsequent transitions. Wissenschaftlich-Technische Berichte, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), HZDR-063. Prasser, H. M., Böttger, A., & Zschau, J. (1998). A new electrode-mesh tomograph for gas–liquid flows. Flow Measurement and Instrumentation, 9(2), 111-119. doi:http://dx.doi.org/10.1016/S0955-5986(98)00015-6 Prince, M. J., & Blanch, H. W. (1990). Bubble coalescence and break-up in air-sparged bubble columns. AIChE Journal, 36(10), 1485-1499. doi:10.1002/aic.690361004 Shi, J. M., Krepper, E., Lucas, D., & Rohde, U. (2003). Some concepts for improving the MUSIG model, internal note. Tomiyama, A. (1998). Struggle with computational bubble dynamics. Paper presented at the Third International Conference on Multiphase Flow, ICMF, Lyon, France. Tomiyama, A., Zun, I., Tamai, H., Shimomura, H., & Hosokawa, S. (1999). Spatial evolution of developing air–water bubble flow in a vertical pipe. Paper presented at the 2nd Int. Symp. on Two-phase Flow Modelling and Experimentation, Pisa. Vallée, C., Höhne, T., Prasser, H.-M., & Sühnel, T. (2008). Experimental investigation and CFD simulation of horizontal stratified two-phase flow phenomena. Nuclear Engineering and Design, 238(3), 637-646. doi:http://dx.doi.org/10.1016/j.nucengdes.2007.02.051 Vallée, C., Höhne, T., Prasser, H. M., & Sühnel, T. (2005). Experimental modelling and cfd simulation of air/water flow in a horizontal channel. Paper presented at The 11th International Topical Meeting on Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France. Vallée, C., Höhne, T., Prasser, H. M., & Sühnel, T. (2007). Experimental investigation and CFD simulation of slug flow in horizontal channels. Wissenschaftlich-Technische Berichte, Forschungszentrum Dresden-Rossendorf e.V., Institut für Sicherheitsforschung(FZD-485). Vallée, C., Lucas, D., Beyer, M., Pietruske, H., Schütz, P., & Carl, H. (2010). Experimental CFD grade data for stratified two-phase flows. Nuclear Engineering and Design, 240(9), 2347-2356. doi:http://dx.doi.org/10.1016/j.nucengdes.2009.11.011 Vallée, C., Seidel, T., Lucas, D., Beyer, M., Prasser, H. M., Pietruske, H., . . . Carl, H. (2012). Counter-current flow limitation in a model of the hot leg of a PWR - Comparison between air/water and steam/water experiments. Nuclear Engineering and Design, 245, 113-124. doi:10.1016/j.nucengdes.2012.01.001 Vallée, C., Seidel, T., Lucas, D., Tomiyama, A., & Murase, M. (2011). Comparison of countercurrent flow limitation experiments performed in two different models of the hot leg of a pressurized water reactor with rectangular cross section. Journal of Engineering for Gas Turbines and Power, 133(5). doi:10.1115/1.4002884 Yegorov, Y. (2004). Contact condensation in stratified steam-water flow. (EVOLECORA-D 07) Ẑun, I. (1980). The transverse migration of bubbles influenced by walls in vertical bubbly flow. International Journal of Multiphase Flow, 6(6), 583-588. doi:http://dx.doi.org/10.1016/0301-9322(80)90053-1in_ID
dc.identifier.issn2477-3328
dc.identifier.urihttp://hdl.handle.net/11617/7474
dc.description.abstractOver the last 20 years, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) has contributed in the development of Computational Fluid Dynamics (CFD) for multiphase flows. In the CFD department, a lot of efforts have been performed to provide CFD as a reliable simulation tool for the design, optimization and safety analyses of medium and large scale applications. The tool is expected to contribute in the improvement of the efficient use of energy and resources as well as safety operation. Most of the research activities are related to gas-liquid flows covering dispersed flows, stratified flows and mixture or transition flows. The development is carried out using Euler-Euler two or multi fluid model as the basis. The paper discussed some characteristics of the CFD model development in HZDR started with “simple”, reliable experimental data for validation and stepwise and continuous improvement. The examples of each characteristic were given. The discussions covered three CFD modeling frames which had been developed in HZDR; they were iMUSIG for dispersed flows, AIAD for stratified flows and GENTOP concept for mixture or transitional flows.in_ID
dc.language.isoenin_ID
dc.publisherUniversitas Muhammadiyah Surakartain_ID
dc.subjectCFDin_ID
dc.subjectHZDRin_ID
dc.subjectMultiphase flowsin_ID
dc.subjectDispersed flowsin_ID
dc.subjectStratified flowsin_ID
dc.titleCFD Development for Multiphase Flows in HZDRin_ID
dc.typeArticlein_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record