Show simple item record

dc.contributor.authorSetiahadi, Bambang
dc.date.accessioned2017-10-31T03:54:29Z
dc.date.available2017-10-31T03:54:29Z
dc.date.issued2017-05-20
dc.identifier.citation[1]. Cargill, P.J., Schmidt, J.M. (2002), 9 Modeling Interplanetary CMEs Using Magneto-hydrodynamic Simulations, Annales Gephysicae, Vol. 20, pp. 879-890. [2]. Gombosi, T.I., DeZeeuw, D.L., Groth, C.P.T., Powell, K.G., Stout, Q.F. (2000), Multiscale MHD Simulation of a Solar Coronal Mass Ejection and Its Interaction with the Magnetosphere-Ionosphere System, Journal of Atmospheric and SolarTerrestrial Physics, Vol. 62, pp. 15151525. [3]. Ekenback, A., Holmstrom, M. (2014), MHD Modeling of the Interaction Between the Solar Wind and Solar System Objects, Swedish Institute of Space Physics, pp. 110. [4]. Nakamizo, A., Kubo, Y., Tanaka, T. (2014), A 3-D MHD Simulation Model of the Solar Corona-Solar Wind System, N.I.C.T, pp. 151-167. [5]. Pomoell, J., Vainio, R., Kissmann, R. 2011), MHD Simulation of the Evolution of Shock Structures in the Solar Corona: Implications for Coronal Shock Acceleration, Astrophys. Space Sci. Trans., Vol. 7, pp. 387-394. [6]. Setiahadi, B. (2005), Advances and Frontier in Solar-Terrestrial Magnetohydrodynamics Computer Simulations and Space Early Warnings at LAPAN Watukosek 2005, Prosiding Semiloka Simulasi dan Komputasi serta Aplikasi 2005, P3TIE BPPT, pp. 32-58. [7]. Setiahadi, B. (2006), Two-Dimensional Hydrodynamics Computer Simulation on the Formation of Terrestrial Comet Tail Due to Solar Wind Blows, Prosiding Semiloka Simulasi dan Komputasi serta Aplikasi 2006, P3TIE BPPT, pp. 48-54. [8]. Singh, J., Mineer, S., Sakurai, T., Ichimoto, K. (2007), Magnetic Nature of Coronal Loops, Bull. Astr. Soc. India, Vol. 35, pp. 437-445. [9]. Usmanov, A.V., Goldstein, M.L. (2003), A Tilted-dipole MHD Model of the Solar Corona and Solar Wind, Journal of Geophysical Research, Vol. 108, No. A9, pp. 1-10.in_ID
dc.identifier.issn2527-533X
dc.identifier.urihttp://hdl.handle.net/11617/9362
dc.description.abstractAn analytical solution of initial and un-sheared low solar coronal magnetic arcade as initial value is perturbed and equilibrium is assumed to loss. The dynamical state of lossing equilibrium is descibed first and possible consequnces to the numerical scheme is derived. The dynamical evolution is followed by computer simulation which computed numerical solutions of complete set time-dependent magnetohydrodynamics partial differential equations. Automatic algorithm to inspect the MHD fast-mode speed is introduced to maintain simulation scheme stable during computations. Results show there will be shocks, known as MHDwaves shock, along the way to interplanetary space. Temperature shock is not prominent and only a relatively unsignificant temperature rise is resulted, instead density shock is noticeable. The density rise is relatively far greater to order of 100.1  9 kg .in_ID
dc.language.isoidin_ID
dc.publisherProsiding SNPBS (Seminar Nasional Pendidikan Biologi dan Saintek) Ke-2in_ID
dc.subjectInitial arcadein_ID
dc.subjectloss equilibriumin_ID
dc.subjectdynamical evolution-shocksin_ID
dc.titleMagnetohydrodynamic Computer Simulation of Erupting Low Solar Coronal Magnetic Fieldsin_ID
dc.typeArticlein_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record