Show simple item record

dc.contributor.authorAssaffat, Luqman
dc.date.accessioned2016-02-25T04:25:47Z
dc.date.available2016-02-25T04:25:47Z
dc.date.issued2016-02
dc.identifier.citationAhmad, A.S. , Hassan, M.Y., Abdullah, M.P., Rahman, H.A., Hussin, F., Abdullah, H. , Saidur, R. 2014. A Review on Applications of ANN And SVM For Building Electrical Energy Consumption Forecasting. Renewable And Sustainable Energy Reviews 33, 102–109 Alfares , H.K. , Nazeeruddin, M. 2002. Electric Load Forecasting : Literature Survey and Class if ication of Methods. International Journal of Systems Science. volume 33. number 1. pa ges 23 ± 34 Ceper ic, V. , Gie le n, G., Baric , A. 201 2. Expert Systems with Applications 39 . 10933– 10942 Almes haiei, E. , Solta n, H. , 2011. A Methodology for Electric Power Load Forecasting. Alexandria Engineering Journal. 50. 137–144 Hahn, H., N ieberg, S.M., Pickl, S. 2009. Electric Load Forecasting Methods : Tools for Decision Making , Europea n Journal of Operational Research 199. 902–907 Hong, W.C. 2009. Chaotic partlicle swarm optimizat ion agorithm in asupport vect or regress ion electric load f orecasting model, Energy Conversion and Management. 50.105–117 Prasetyo, E. 2014. Data Mining Mengolah Data Menjadi informasi Menggunakan Matlab. CV. Andi Offset. Y ogyakarta Qi, Z. , Tian, Y. , Shi, Y. 2013. Robust Twin Support Vector Machine for Pattern Class if ication. Pattern Recog nition 46. 305–316 Smola , A.J. , Sc holkopf, B. 200 4. A Tutorial On Support Vector Regression. Statistic and Computing 14. 199-222in_ID
dc.identifier.issn2407-9189
dc.identifier.urihttp://hdl.handle.net/11617/6771
dc.description.abstractThe industrial sector need an information system of da ily electrical load forecasting, to control the electrical load, backup electrical en ergy and operational arrangements of the industrial activities. The electric load prediction information system must be accurate by a small error value for that go al is reached. The objective research prod uce an information systems for accurate electrical load da ilyforecasting by using three variables training data. They are times series of the pa st electric load da tas, the data of production capacity and da ytypes data. Based Support Vector Machine (SVM) using a polinomial k ernel f unction, theinformation system of daily electricity load prediction on the industrial sector is capable of producing 3.34% MAPE value by SVM training da ta of 11 months an d the system work s by Kernel-order polinomial 2in_ID
dc.language.isoidin_ID
dc.publisherLPPM STIKES Muhammadiyah Kudusin_ID
dc.subjectPredictionin_ID
dc.subjectElectrical Loadin_ID
dc.subjectSVMin_ID
dc.subjectKernel Functionin_ID
dc.titlePrediksi Beban Listrik Harian Pada Sektor Industri Berbasis SVM Dengan Kernel Polinomialin_ID
dc.typeArticlein_ID


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record