Show simple item record

dc.contributor.authorSyaichu, Arief
dc.contributor.authorRohman
dc.date.accessioned2012-04-23T07:22:48Z
dc.date.available2012-04-23T07:22:48Z
dc.date.issued2007-10
dc.identifier.citationC. Edwards and I. Postlethwaite, “Anti-windup and Bumpless-transfer Schemes”, Automatica, Vol.34, No.2, pp.199-210, 1998. G. Grimm, J. Hatfield, I. Postlethwaite, A. R. Teel, M. C. Turner and L. Zaccarian, “Antiwindup for Stable Linear Systems With Input Saturation: An LMI-Based Synthesis”, IEEE Transactions on Automatic Control, Vol.48, No.9, pp.1509-1525, September 2003. R. Hanus and M. Kinnaert, “Control of constrained multivariable systems using the conditioning technique”, Proceedings of the American Control Conference, Pittsburg, PA, USA, pp.1712-1718, 1989. R. Hanus, M. Kinnaert, and J.L. Henrotte, “Conditioning technique, a general antiwindup and bumpless transfer method”, Automatica, Vol.23, No.6, pp.729-739, 1987. M. V. Kothare, P. J. Campo, M. Morari and C. N. Nett, “A unified framework for the study of anti-windup designs”, Automatica, Vol.30, No.12, pp.1869-1883, 1994. E. F. Mulder and M. V. Kothare and M. Morari, “Multivariable anti-windup controller synthesis using linear matrix inequalities”, Automatica, Vol.37, No.9, pp.1407-1416, 2001. Y. Peng, D. Vrancic, R. Hanus and S. Weller, “Conditioning technique: a general antiwindup and bumpless transfer method”, Automatica, Vol.34, No.12, pp.1559-1565, 1998. Syaichu-Rohman, R. H. Middleton and M. M. Seron, “A Multivariable Nonlinear Algebraic Loop as a QP with Application to MPC”, Proceedings of the 7th European Control Conference, Cambridge, UK, September 2003. K. S. Walgama, S. Ronnback and J. Sternby, “Generalization of conditioning technique for anti-windup compensator”, IEE Proceedings on Control Theory and Applications, Vol.139, pp.109-118, 1992.en_US
dc.identifier.issn0853-2850
dc.identifier.urihttp://hdl.handle.net/11617/918
dc.description.abstractFollowing a linear controller design, an anti-windup compensation is a popular approach that may be taken to deal with input saturation. There have been many anti-windup techniques proposed. Based on a transfer function parameterization of the resulting anti-windup controller, these antiwindup techniques may be classified into two categories, which may be called 1-degree of freedom (1-DOF) and 2-degree of freedom (2-DOF) parameterizations. Using newly known equivalence between a multivariable nonlinear algebraic loop and a constrained quadratic programming, two kind parameterizations of some existing anti-windup compensations are explained.en_US
dc.titleANTI-WINDUP CONTROLLER PARAMETERIZATIONSen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record