Show simple item record

dc.contributor.authorMujiburohman, M.
dc.contributor.authorHidayati, Nur
dc.contributor.authorPurnama, Herry
dc.date.accessioned2015-04-16T07:46:09Z
dc.date.available2015-04-16T07:46:09Z
dc.date.issued2014
dc.identifier.citationAdjemian, K.T., et al., 2002, Silicon Oxide Nafion Composite Membranes for Proton-Exchange Membrane Fuel Cell Operation at 80-140[degree]C. Journal of The Electrochemical Society 149(3): p. A256-A261. Adjemian, K.T., et al., 2006, Function and Characterization of Metal Oxide−Nafion Composite Membranes for Elevated-Temperature H2/O2 PEM Fuel Cells. Chemistry of Materials 18(9): p. 2238-2248. Antonucci, P.L., et al., 1999, Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation. Solid State Ionics 125(1-4): p. 431-437. Arico, A.S., et al., 1998, Comparison of Ethanol and Methanol Oxidation in a Liquid-Feed Solid Polymer Electrolyte Fuel Cell at High Temperature. Electrochemical and Solid-State Letters 1(2): p. 66-68. Aricò, A.S., et al., 2003, Influence of the acid-base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells. Solid State Ionics 161(3-4): p. 251-265. Casciola, M., et al., 2009, Conductivity and Methanol Permeability of NafionZirconium Phosphate Composite Membranes Containing High Aspect Ratio Filler Particles. Fuel Cells 9(4): p. 394-400. Chen, L.-C., et al., 2008, Nafion/PTFE and zirconium phosphate modified Nafion/PTFE composite membranes for direct methanol fuel cells. Journal of Membrane Science 307(1): p. 10-20. Chen, Z., et al., 2006, Nafion/Zeolite Nanocomposite Membrane by in Situ Crystallization for a Direct Methanol Fuel Cell. Chemistry of Materials 18(24): p. 5669-5675. Crawley, G., 2006, Opening doors to fuel cell commercialisation: Proton Exchange Membrane Fuel Cell, Fuel Cell Today, www.fuelcelltoday.com. Dewi E.L., 2007, New Materials for Fuel Cell Development, Proc. 1st Int. Conf. on Chemical Sciences Yogyakarta, (ICCS-2007), 95 (1-8) Dewi E.L., dan Handayani, S., 2008, Karakterisasi komposit hidrokarbon polimer tersulfonasi (sABS-Z) sebagai alternatif polielektrolit untuk fuel cell. Jurnal Sains Materi Indonesia Edisi Khusus Desember, hal. 1-4. Dimitrova, P., et al., 2002, Modified Nafion®-based membranes for use in direct methanol fuel cells. Solid State Ionics 150(1-2): p. 115-122. DOE., 2009, Hydrogen and fuel cell activities, progress, and plans: report to congress; <http://www.hydrogen.energi.gov/pdfs/epact_report_sec811.pdf>. Doğan, H., et al., Organo montmorillonites and sulfonated PEEK nanocomposite membranes for fuel cell applications. Applied Clay Science 2011:52: 285–294. Elabd, Y.A., and Napadensky, E., 2004, Sulfonation and characterization of poly(styrene-isobutylene-styrene) triblock copolymers at high ion exchange capacity. Polymer 45, p. 3037-3043. Gnana Kumar, G., et al., 2009, Nafion membrans modified with silica sulfuric acid for the elevated temperature and lower humidity operation of PEMFC. International Journal of Hydrogen Energi 34(24): p. 9788-9794. Gowariker, VR., et al., 1986, Polymer Science, New Delhi: New Age International. Handayani, S., et al., Simple sulphonation method of composite 68% sulfonated polyether ether ketone and its properties as polyelectrolyte in high temperature direct methanol fuel cell. World Applied Sciences Journal 2010:9(11): 12061212. Haubold, H.G., et al., 2001 Nano structure of NAFION: a SAXS study. Electrochimica Acta 46(10-11): p. 1559-1563. Hickner, M.A., et al., 2004, Alternative polymer systems for Proton Exchange Membranes (PEMs). Chemical Review 104, p. 4587-4612. Hoffmann, P., 2001, Tomorrow's Energi: Hydrogen, Fuel Cells, and the Prospects for a Cleaner Planet, MIT Press, Cambridge, MA. Huang, R. Y. M., P. Shao, C. M. Burns, X. Feng, 2001, Sulfonation of poly(ether ether ketone) (PEEK): kinetic study and characterization, Journal of Applied Polymer Science, vol 82, pp. 2651-2660. Jiang, R., H.R. Kunz, and J.M. Fenton, 2006, Composite silica/Nafion® membranes prepared by tetraethylorthosilicate sol-gel reaction and solution casting for direct methanol fuel cells. Journal of Membran Science 272(1-2): p. 116-124. Jin, Y., et al., 2008, Novel Nafion composite membranes with mesoporous silica nanospheres as inorganic fillers. Journal of Power Sources 185(2): p. 664-669. Kementerian Negara Riset dan Teknologi Republik Indonesia, Indonesia 2005-2025: Buku Putih, 2006 Kim, D.J., Ngan Khanh Thi Do, Eun Bum Cho, 2009, Method for preparing homogeneously sulfonated poly(ether ether ketone) membranes by casting method using organic solvent. USPatent No. 20090092880. Kreuer, K.-D., 1996, Proton Conductivity: Materials and Applications. Chemistry of Materials 8(3): p. 610-641. Lamy, C., et al., 2002, Recent advances in the development of direct alcohol fuel cells (DAFC). Journal of Power Sources 105(2): p. 283-296. Lee JK, Li W., Manthiram A., 2009, Poly(arylene ether sulfone)s containing pendant sulfonic acid groups as membrane materials for direct methanol fuel cells. Journal of Membranes Science 330, p. 73-79. Li, X., et al., 2007, Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells. Solid State Ionics 178(19-20): p. 1248-1255. Mahreni, A., et al., 2009, Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity. Journal of Membrane Science 327(1-2): p. 32-40. Mioč, U., et al., 1991, Equilibrium of the protonic species in hydrates of some heteropolyacids at elevated temperatures. Solid State Ionics 46: p. 1-2 Neburchilov, V., et al., 2007, A review of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources 169(2): p. 221-238. Nicholas, W.D. and A.E. Yossef, 2006, Polymer electrolyte membranes for the direct methanol fuel cell: A review. Journal of Polymer Science Part B: Polymer Physics, 44(16): p. 2201-2225. Othman, M.H.D. , A.F. Ismail, A. Mustafa, 2007, Physico-Chemical Study of Sulfonated Poly(Ether Ether Ketone) Membranes for Direct Methanol Fuel Cell Application. Malaysian Polimer Journal 2, 10-28. Pasupath,i S., et al., 2008 High DMFC performance output using modified acid-base polymer blend. International Journal of Hydrogen Energy 2008;33:3132-6. Peighambardoust, S.J., Rowshanzamir, S., Amjadi, M., 2010, Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy 35, p. 9349-9384. Ren, X., et al., 2000, Methanol Transport Through Nation Membranes. Electroosmotic Drag Effects on Potential Step Measurements. Journal of The Electrochemical Society, 147(2): p. 466-474. Rikukawa, M. and K. Sanui, 2000, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers. Progress in Polymer Science 25(10): p. 1463-1502. Rodgers, M.P., Z. Shi, and S. Holdcroft, 2009, <I>Ex situ</I> Characterisation of Composite Nafion Membranes Containing Zirconium Hydrogen Phosphate. Fuel Cells 9(5): p. 534-546. Saccà, A., et al., 2005, Nafion-TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs). Journal of Power Sources 152: p. 1621. Sang, S., Q. Wu, and K. Huang, 2007, Preparation of zirconium phosphate (ZrP)/Nafion1135 composite membrane and H+/VO2+ transfer property investigation. Journal of Membrane Science 305(1-2): p. 118-124. Shang, F., et al., 2009, PWA/silica/PFSA composite membrane for direct methanol fuel cells. Journal of Materials Science 44(16): p. 4383-4388. Shao, Z.-G., et al., 2006, Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell. Solid State Ionics 177(7-8): p. 779-785. Shao, Z.-G., P. Joghee, and I.M. Hsing, 2004, Preparation and characterization of hybrid Nafion-silica membran doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells. Journal of Membrane Science, 229(1-2): p. 43-51. Sheng, W. et al., 2009, Sulfonated poly(ether sulfones) (sPES)/ boron phosphate (BPO ) composite membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy 34, p. 89828991. Silva, C.M.D., et al., 2009, Conductivity and thermal behaviour of sulfnated ABS for fuel cell applications, ECS Transactions 25, p. 881-889. Silva, L.A., et al., 2008, Poly(styrene-co-acrylonitrile) based proton conductive membranes. European Polymer Journal 17, p. 1462-1474. Smitha, B., S. Sridhar, and A.A. Khan, 2005, Solid polymer electrolyte membranes for fuel cell applications--a review. Journal of Membrane Science 259(1-2): p. 10-26. Song, S. and P. Tsiakaras, 2006, Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Applied Catalysis B: Environmental 63(34): p. 187-193. Staiti, P., et al., 2001, Hybrid Nafion-silica membrans doped with heteropolyacids for application in direct methanol fuel cells. Solid State Ionics 145(1-4): p. 101-107. Varsha, R., Cross-linked sulfonated poly (ether ether ketone) (SPEEK)/reactive organoclay nanocomposite proton exchange membranes (PEM), Journal of Membrane Science 2011: 372: 40–48. Wang, Y., et al., 2008, Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. Journal of Power Sources 183(2): p. 454-463. Wang, Y., et al., 2011, A review of polymer electrolyte membrane fuel cells: technology, applications, and needs on fundamental research. Applied Energy 88, p. 981-1007. Witoelar, R., 2009, Cadangan minyak bumi Indonesia tersisa 23 tahun, Berita Sore, 4 Maret 2009,http://beritasore.com/2009/03/04/cadangan-minyak-bumi-indonesiaterisa-23-tahun/ Xu, W., et al., 2005, Low methanol permeable composite Nafion/silica/PWA membranes for low temperature direct methanol fuel cells. Electrochimica Acta 50(16-17): p. 3280-3285. Yang, T., 2008, Preliminary study of SPEEK/PVA blend membranes for DMFC applications. International Journal of Hydrogen Energy 33:6772-9 Yatin, P. and A.M. Kenneth, 2009 Durability enhancement of Nafion® fuel cell membranes via in situ sol-gel-derived titanium dioxide reinforcement. Journal of Applied Polymer Science 113(5): p. 3269-3278. Yee, R. S. L., K. Zhang and B. P. Ladewig, 2003, The effect of sulfonated Poly(ether ether Ketone) Ion Exchange Preparation Condition on membrane properties, Membranes, vol 3, pp. 182-195. Young, TH., et al., 2008, Improvement of electrochemical performances of sulfonated poly(arylene ether sulfone) via incorporation of sulfonates poly(arylene ether benzimidazole). Journal of Power Source 175, p. 724-731.in_ID
dc.identifier.urihttp://hdl.handle.net/11617/5716
dc.description.abstractKonsumsi minyak bumi sudah saatnya dikurangi dengan menggunakan sumber energi alternatif karena cadangan minyak bumi semakin menipis. Fuel cell (Sel bahan bakar) merupakan salah satu solusi penyedia sumber energi listrik. Selain merupakan sumber energi yang ramah lingkungan, fuel cell juga dapat diaplikasikan untuk berbagai kebutuhan yang luas. Kendala komersialisasi sel bahan bakar di Indonesia disebabkan oleh tingginya biaya manufaktur, termasuk diantaranya adalah mahalnya membran elektrolit yang merupakan salah satu komponen jantung fuel cell. Pemanfaatan material yang murah seperti poly ether ether ketone (PEEK) dapat mengurangi beban biaya manufaktur fuel cell secara keseluruhan dan sekaligus menumbuhkan industry hilir. Tetapi PEEK merupakan material yang non-ionik sehingga PEEK harus dijadikan material yang mampu menghantarkan ion dengan cara sulfonasi dan/ atau penambahan bahan lain yang konduktif. Penelitian ini secara umum bertujuan untuk melakukan proses sulfonasi PEEK. Secara khusus bertujuan untuk menentukan kondisi operasi; suhu dan waktu sulfonasi PEEK yang tepat sehingga diperoleh derajat sulfonasi yang diinginkan. Tujuan yang lain, untuk memperbaiki sifat-sifat konduktivitas, water uptake, permeabilitas dan sifat mekanik membrane sPEEK ditambahkan bahan pengisi SiO 2 -Cs 2.5 H 0.5 PW 12 O , sehingga membran komposit sPEEK mampu menggeser posisi membran Nafion 40 ® yang relatif mahal harganya. Sifat-sifat membran sPEEK dipengaruhi oleh kedua variabel yang diteliti. Peningkatan waktu dan suhu sulfonasi meningkatkan kemampuan membran dalam menyimpan air dan sedikit meningkatkan permeabilitas metanol Jumlah gugus asam sulfonik yang menggantikan ion hidrogen dalam rantai polimer meningkat dengan bertambahnya waktu dan suhu sulfonasi.in_ID
dc.language.isoidin_ID
dc.publisherUniversitas Muhammadiyah Surakartain_ID
dc.titleProduksi Membran Poly Ether Ether Ketone Tersulfonasi Untuk Proton Exchange Membrane Fuel Cellin_ID
dc.typeTechnical Reportin_ID


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record